Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Presentations of the unit group of an order in a non-split quaternion algebra

dc.contributor.authorCorrales Rodrigáñez, Carmen
dc.contributor.authorJespers, Eric
dc.contributor.authorLeal, Guilherme
dc.contributor.authorRio, Ángel del
dc.date.accessioned2023-06-20T09:32:36Z
dc.date.available2023-06-20T09:32:36Z
dc.date.issued2004
dc.description.abstractWe give an algorithm to determine a finite set of generators of the unit group of an order in a non-split classical quaternion algebra H(K) over an imaginary quadratic extension K of the rationals. We then apply this method to obtain a presentation for the unit group of H(Z[(1+root-7)/(2)]). As a consequence a presentation is discovered for the orthogonal group SO3(Z[(1+root-7)/(2)]). These results provide the first examples of a characterization of the unit group of some group rings that have an epimorphic image that is an order in a non-commutative division algebra that is not a totally definite quaternion algebra.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipOnderzoeksraad of Vrije Universiteit Brussel, Fonds voor Wetenschappelijk Onderzoek (Flanders),
dc.description.sponsorshipD.G.I.of Spain and Fundación Séneca of Murcia.
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/14942
dc.identifier.doi10.1016/j.aim.2003.07.015
dc.identifier.issn0001-8708
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/S0001870803002585
dc.identifier.relatedurlhttp://www.sciencedirect.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/49857
dc.issue.number2
dc.journal.titleAdvances in Mathematics
dc.language.isoeng
dc.page.final524
dc.page.initial498
dc.publisherElsvier
dc.rights.accessRightsrestricted access
dc.subject.cdu512.54
dc.subject.keywordAlgorithms
dc.subject.keywordFinite sets of generators
dc.subject.keywordUnit groups
dc.subject.keywordOrders
dc.subject.keywordquaternion algebras
dc.subject.keywordPresentations
dc.subject.ucmGrupos (Matemáticas)
dc.titlePresentations of the unit group of an order in a non-split quaternion algebra
dc.typejournal article
dc.volume.number186
dcterms.references[1] A.F. Beardon, The Geometry of Discrete Groups, springer, Berlin, 1983. [2] L. Bianchi, Sui gruppi de sostituzioni lineari con coeficienti appartenenti a corpi quadratici imaginari, Math. Ann. 40 (1892) 332–412. [3] J. Elstrodt, F. Grunewald, J. Mennicke, Groups Acting on Hyperbolic Space, Harmonic Analysis and Number Theory, Springer, Berlin, 1998. [4] B. Fein, B. Gordon, J.M. Smith, On the representation of 1 as a sum of two squares in an algebraic number field, J. Number Theory 3 (1971) 310–315. [5] B. Fine, The Algebraic Theory of the Bianchi Groups, Marcel Dekker, New York, 1989. [6] A.J. Hahn, O.T. O’Meara, The Classical Groups and K-Theory, Grundlehren der mathematischen Wissenschaften 291, Springer, Heidelberg, 1989. [7] E. Jespers, Units in integral group rings: a survey, Proceedings of the International Conference on Methods in Ring Theory, Trento, 1997. Lecture Notes in Pure and Applied Mathematics, Vol. 198,Marcel Dekker, New York, 1998, pp. 141–169. [8] E. Kleinert, Units in Skew Fields, Progress in Mathematics, 186, Birkha¨ user Verlag, Basel, 2000. [9] E. Kleinert, Units of classical orders: a survey, Enseign. Math. (2) 40 (3–4) (1994) 205–248. [10] H. Poincare´, Me´moire sur les groupes kleine´ es, Acta. Math. 3 (1883) 49–92. [11] R. Riley, Applications of a computer implementation of Poincare´ ’s theorem on fundamental polyhedra, Math. Comp. 40 (162) (1983) 607–632.
dspace.entity.typePublication
relation.isAuthorOfPublication9a5ad1cc-287e-48b3-83f9-e3d1e36d5ff2
relation.isAuthorOfPublication.latestForDiscovery9a5ad1cc-287e-48b3-83f9-e3d1e36d5ff2

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
01.pdf
Size:
629.09 KB
Format:
Adobe Portable Document Format

Collections