Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

GA-guided task planning for multiple-haps in realistic time-varying operation environments

dc.book.titleProceedings of the 2019 Genetic and Evolutionary Computation Conference (GECCO'19)
dc.contributor.authorKiam, Jane Jean
dc.contributor.authorBesada Portas, Eva
dc.contributor.authorHehtke, Valerie
dc.contributor.authorSchulte, Axel
dc.date.accessioned2023-06-17T14:18:36Z
dc.date.available2023-06-17T14:18:36Z
dc.date.issued2019-07
dc.description©2019 Copyright held by the owner/author(s). Publication rights licensed to the Association for Computing Machinery. Genetic and Evolutionary Computation Conference (GECCO)(2019. Praga)
dc.description.abstractHigh-Altitude Pseudo-Satellites (HAPS) are long-endurance, fixed-wing, lightweight Unmanned Aerial Vehicles (UAVs) that operate in the stratosphere and offer a flexible alternative for ground activity monitoring/imaging at specific time windows. As their missions must be planned ahead (to let them operate in controlled airspace), this paper presents a Genetic Algorithm (GA)-guided Hierarchical Task Network (HTN)-based planner for multiple HAPS. The HTN allows to compute plans that conform with airspace regulations and operation protocols. The GA copes with the exponentially growing complexity (with the number of monitoring locations and involved HAPS) of the combinatorial problem to search for an optimal task decomposition (that considers the time-dependent mission requirements and the time-varying environment). Besides, the GA offers a flexible way to handle the problem constraints and optimization criteria: the former encodes the airspace regulations, while the latter measures the client satisfaction, the operation efficiency and the normalized expected mission reward (that considers the wind effects in the uncertainty of the arrival-times at the monitoring-locations). Finally, by integrating the GA into the HTN planner, the new approach efficiently finds overall good task decompositions, leading to satisfactory task plans that can be executed reliably (even in tough environments), as the results in the paper show.
dc.description.departmentSección Deptal. de Arquitectura de Computadores y Automática (Físicas)
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/60837
dc.identifier.doi10.1145/3321707.3321768
dc.identifier.isbn978-1-4503-6111-8
dc.identifier.officialurlhttp://dx.doi.org/10.1145/3321707.3321768
dc.identifier.relatedurlhttps://dl.acm.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/14043
dc.language.isoeng
dc.page.final1240
dc.page.initial1232
dc.page.total9
dc.publication.placeNueva York
dc.publisherAssociation for Computing Machinery
dc.rights.accessRightsopen access
dc.subject.cdu004.8
dc.subject.keywordGenetic algorithms
dc.subject.keywordMultiobjective constrained optimization
dc.subject.keywordMission task-planning
dc.subject.keywordHaps
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.unesco1203.04 Inteligencia Artificial
dc.titleGA-guided task planning for multiple-haps in realistic time-varying operation environments
dc.typebook part
dspace.entity.typePublication
relation.isAuthorOfPublication0acc96fe-6132-45c5-ad71-299c9dcb6682
relation.isAuthorOfPublication.latestForDiscovery0acc96fe-6132-45c5-ad71-299c9dcb6682

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
besadaportas19libre.pdf
Size:
968.3 KB
Format:
Adobe Portable Document Format