Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

An Improved Crow Search Algorithm Applied to Energy Problems

dc.contributor.authorDíaz, Primitivo
dc.contributor.authorPérez-Cisneros, Marco
dc.contributor.authorCuevas, Erik
dc.contributor.authorAvalos, Omar
dc.contributor.authorGálvez, Jorge
dc.contributor.authorHinojosa Cervantes, Salvador Miguel
dc.contributor.authorZaldivar, Daniel
dc.date.accessioned2023-06-17T12:38:19Z
dc.date.available2023-06-17T12:38:19Z
dc.date.issued2018-03-06
dc.description.abstractThe efficient use of energy in electrical systems has become a relevant topic due to its environmental impact. Parameter identification in induction motors and capacitor allocation in distribution networks are two representative problems that have strong implications in the massive use of energy. From an optimization perspective, both problems are considered extremely complex due to their non-linearity, discontinuity, and high multi-modality. These characteristics make difficult to solve them by using standard optimization techniques. On the other hand, metaheuristic methods have been widely used as alternative optimization algorithms to solve complex engineering problems. The Crow Search Algorithm (CSA) is a recent metaheuristic method based on the intelligent group behavior of crows. Although CSA presents interesting characteristics, its search strategy presents great difficulties when it faces high multi-modal formulations. In this paper, an improved version of the CSA method is presented to solve complex optimization problems of energy. In the new algorithm, two features of the original CSA are modified: (I) the awareness probability (AP) and (II) the random perturbation. With such adaptations, the new approach preserves solution diversity and improves the convergence to difficult high multi-modal optima. In order to evaluate its performance, the proposed algorithm has been tested in a set of four optimization problems which involve induction motors and distribution networks. The results demonstrate the high performance of the proposed method when it is compared with other popular approaches.
dc.description.departmentDepto. de Ingeniería de Software e Inteligencia Artificial (ISIA)
dc.description.facultyFac. de Informática
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/67583
dc.identifier.doi10.3390/en11030571
dc.identifier.issn1996-1073
dc.identifier.officialurlhttps://doi.org/10.3390/en11030571
dc.identifier.relatedurlhttps://www.mdpi.com/1996-1073/11/3/571
dc.identifier.urihttps://hdl.handle.net/20.500.14352/12677
dc.issue.number3
dc.journal.titleEnergies
dc.language.isoeng
dc.page.initial571
dc.publisherMDPI
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.keywordevolutionary computation
dc.subject.keywordCrow Search Algorithm (CSA)
dc.subject.keywordinduction motors
dc.subject.keyworddistribution networks
dc.subject.ucmProgramación de ordenadores (Informática)
dc.subject.unesco1203.23 Lenguajes de Programación
dc.titleAn Improved Crow Search Algorithm Applied to Energy Problems
dc.typejournal article
dc.volume.number11
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
energies-11-00571-v3.pdf
Size:
2.48 MB
Format:
Adobe Portable Document Format

Collections