Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

An energy balance climate model with hysteresis

dc.contributor.authorDíaz Díaz, Jesús Ildefonso
dc.contributor.authorHetzer, G.
dc.contributor.authorTello del Castillo, Lourdes
dc.date.accessioned2023-06-20T09:35:02Z
dc.date.available2023-06-20T09:35:02Z
dc.date.issued2006-05-01
dc.description.abstractEnergy balance climate models of Budyko type lead to reaction-diffusion equations with slow diffusion and memory on the 2-sphere. The reaction part exhibits a jump discontinuity (at the snow line). Here we introduce a Babuska-Duhem hysteresis in order to account for a frequent repetition of sudden and fast warming followed by much slower cooling as observed from paleoclimate proxy data. Existence of global solutions and of a trajectory attractor will be established for the resulting system of a parabolic differential inclusion and an ode.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipDepartment of Applied Mathematics of Complutense University of Madrid
dc.description.sponsorshipSecretaria de Estado de Educación y Universidades, Spain.
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/15405
dc.identifier.doi10.1016/j.na.2005.07.038
dc.identifier.issn0362-546X
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/S0362546X05007352
dc.identifier.relatedurlhttp://www.sciencedirect.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/49964
dc.issue.number9
dc.journal.titleNonlinear analysis : theory, methods and applications
dc.language.isoeng
dc.page.final2074
dc.page.initial2053
dc.publisherPergamon-Elsevier Science
dc.relation.projectIDSAB2002-0020
dc.rights.accessRightsrestricted access
dc.subject.cdu517.91
dc.subject.keywordequations
dc.subject.ucmEcuaciones diferenciales
dc.subject.unesco1202.07 Ecuaciones en Diferencias
dc.titleAn energy balance climate model with hysteresis
dc.typejournal article
dc.volume.number64
dcterms.referencesH. Amann, Linear and Quasilinear Problems, vol. 1, Abstract Linear Theory, Monographs in Mathematics, vol. 89, Birkhäuser, Basel-Boston-Berlin, 1995. J.-P. Aubin, H. Frankowska, Set-valued analysis, Systems & Control: Foundations and Analysis, vol. 2, Birkhäuser, Boston-Basel-Berlin, 1990. J.-P. Aubin, A. Cellina, Differential Inclusions, Grundlehren der mathematischen Wissenschaften, vol. 264, Springer, Berlin-Heidelberg-New York-Tokyo, 1984. T. Aubin, Nonlinear Analysis on Manifolds. Monge-Ampère Equations, Springer, New York, 1982. K. Bhattacharya, M. Ghil, I.L. Vulis, Internal variability of an energy balance climate model, J. Atmos. Sci. 39 (1982) 1747–1773. H. Brezis, Opérateurs Maximaux Monotones et Semi-groupes de Contractions Dans un Espace de Hilbert, North-Holland, Amsterdam, 1973. M. Brokate, J. Sprekels, Hysteresis and phase transition, Applied Mathematical Sciences, vol. 121, Springer, New York, 1996. M.I. Budyko, The effect of solar radiation variations on the climate of the earth, Tellus 21 (1969) 611–619. V.V. Chepyzhov, M.I. Vishik, Trajectory Attractors for the 2D Navier-Stokes system and some generalizations. Topol. Meth. Nonlinear Anal. 8 (1996) 217–243. V.V. Chepyzhov, M.I. Vishik, Evolution equations and their trajectory attractors, J. Math. Pures Appl. 76 (1997) 913–964. V.V. Chepyzhov, M.I. Vishik, Attractors for Equations of Mathematical Physics, vol. 49, American Mathematical Society, Colloquium Publications, 2002. K. Deimling, Multivalued differential equations, De Gruyter series in nonlinear analysis and applications. vol. 1, de Gruyter, Berlin-New York, 1992. J.I. Díaz, Mathematical analysis of some diffusive energy balance models, in: J.I. Díaz, J.L. Lions (Eds.), Mathematics, Climate and Environment, Mason, Paris, 1993, pp. 28–56. J.I. Díaz (Ed.), The mathematics of models for climatology and environment, NATO ASI Series I: Global Environmental Changes, vol. 48, Springer, Berlin-Heidelberg-New York-Tokyo, 1997. J.I. Díaz, J. Hernández, L. Tello, On the multiplicity of equilibrium solutions to a nonlinear diffusion equation on a manifold arising in Climatology, J. Math. Anal. Appl. 216 (1997) 593–613. J.I. Díaz, G. Hetzer, A quasilinear functional reaction-diffusion equation arising in climatology, in Equations aux dérivées partielles et applications, Articles dédiés á J.-L. Lions, Gauthier-Villars, 1998, pp. 461–480. E. DiBenedetto, Degenerate Parabolic Equations, Springer, New York-Berlin-Heidelberg, 1993. J.I. Díaz, L. Tello, A nonlinear parabolic problem on a Riemannian manifold without boundary arising in Climatology, Collect. Math. 50 (1999) 19–51. M. Ghil, S. Childress, Topics in Geophysical Fluid Dynamics: Atmospheric Dynamics, Dynamo Theory and Climate Dynamics, Applied Mathematical Sciences, Springer, Berlin, 1987. J.K. Hale, Asymptotic Behavior of Dissipative Systems, American Mathematical Society, Providence, RI, 1988. A. Henderson-Sellers, K.A. McGuffie, A Climate Modelling Primer, Wiley, New York, Chichester, 1987. G. Hetzer, The shift-semiflow of a multi-valued evolution equation from climate modeling, Nonl. Anal. 47 (2001) 2905–2916. G. Hetzer, A functional reaction-diffusion equation from climate modeling: S-shapedness of the principal branch, Differential Integral Equations 8 (1995) 1047–1059. G. Hetzer, Global existence, uniqueness and continuous dependence for a reaction-diffusion equation with memory, European Journal of Differential Equations 1996 (1996) 1–16. G. Hetzer, P.G. Schmidt, Analysis of energy balance models, in: V. Lakshmikantham (Ed.), World Congress of Nonlinear Analysts '92, Walter de Gruyter, Berlin, New York, 1996, pp. 1609–1618. G. Hetzer, L. Tello, On a reaction-diffusion system arising in climatology, Dynamic Syst. Appl. 11 (2002) 381–402. M.A. Krasnosel'skii, A.V. Pokrovskii, Systems with Hysteresis, Springer, Berlin, 1989. I.D. Mayergoyz, Mathematical Models of Hysteresis, Springer, Berlin, 1993. A.M. Meirmanov, The Stefan Problem, Walter de Gruyter, Berlin, New York, 1992. J.A. Rial, Abrupt climate change: chaos and order at orbital and millennial scales, Global Planet. Change 41 (2004) 95–109. G.R. Sell, Global attractors for the three-dimensional Navier-Stokes equations, J. Dynam. Differential Equations 8 (1996) 1–33. G.R. Sell, Y. You, Dynamics of evolutionary equations, Applied Mathematical Sciences, vol. 143, Springer, New York, 2002. W.B. Sellers, A global climate model based on the energy balance of the Earth-atmosphere system, J. Appl. Meteor. 8 (1969) 301–320. R.E. Showalter, T.D. Little, U. Hornung, Parabolic with hysteresis. Distributed parameter systems: modelling and control (Warsaw, 1995), Control Cybernet. 25 (3) (1996) 631–643. P.H. Stone, A simplified radiative-dynamical model for the static stability of rotating atmospheres, J. Atmos. Sci. 29 (1972) 405–418. A. Visintin, Differential Models of Hysteresis, Springer, Berlin, 1994. I.I. Vrabie, Compactness Methods for Nonlinear Evolutions, Pitman, Longman, London, 1987. A. Visintin (Ed.), Models of hysteresis, Pitman Research Notes in Mathematics, vol. 286, 1993. J. Wu, Theory and Applications of Partial Functional Differential Equations, Applied Mathematical Sciences, vol. 119, Springer, New York-Berlin-Heidelberg, 1996.
dspace.entity.typePublication
relation.isAuthorOfPublication34ef57af-1f9d-4cf3-85a8-6a4171b23557
relation.isAuthorOfPublication.latestForDiscovery34ef57af-1f9d-4cf3-85a8-6a4171b23557

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
43.pdf
Size:
241.79 KB
Format:
Adobe Portable Document Format

Collections