Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Alisamiento de cintas sobre curvas

Loading...
Thumbnail Image

Official URL

Full text at PDC

Publication date

2005

Defense date

2004

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Universidad Complutense de Madrid, Servicio de Publicaciones
Citations
Google Scholar

Citation

Abstract

En esta tesis se demuestra que las cintas, i.e. estructuras dobles asociadas a un fibrado de línea E sobre su soporte reducido, una curva proyectiva lisa e irreduciblede género arbitrario, son alisables si tienen género aritmético mayor o igual que 3 y la curva soporte admite un recubrimiento doble liso e irreducible con módulo de traza cero asociado E . El método usado se basa en las técnicas infinitesimales quese desarrollan para probar que si la curva soporte admite un tal recubrimiento doble entonces cada cinta sumergida sobre la curva es infinitesimalmente alisable, i.e. sepuede obtener como fibra central de la imagen de alguna deformación infinitesimalde primer orden del morfismo composición del recubrimiento doble y la inmersión delsoporte reducido en el espacio proyectivo ambiente que contiene a la cinta. Se obtienen también inmersiones en el mismo espacio proyectivo para todas las cintas asociadasa E . Entonces, suponiendo la existencia del recubrimiento doble, se demuestra en qué condiciones se puede extender el <<alisamiento infinitesimal>> a un alisamientoglobal sumergido. Como consecuencia se obtienen los resultados de alisamiento.

Research Projects

Organizational Units

Journal Issue

Description

Tesis de la Universidad Complutense de Madrid, Facultad de Ciencias Matemáticas, Departamento de Álgebra, leída el 21-06-2004

Keywords

Collections