Growth and spatially resolved luminescence of low dimensional structures in sintered ZnO
dc.contributor.author | Grym, J. | |
dc.contributor.author | Fernández Sánchez, Paloma | |
dc.contributor.author | Piqueras De Noriega, Francisco Javier | |
dc.date.accessioned | 2023-06-20T10:44:16Z | |
dc.date.available | 2023-06-20T10:44:16Z | |
dc.date.issued | 2005-06 | |
dc.description | © 2005 IOP Publishing Ltd. This work was supported by MCYT (Project MAT2003-00455), by CAM(ProjectMAT/0630/2004) and by EU project HPMT-CT-2001-00215. JG acknowledges the Marie Curie fellowship in the framework of this project (Grant HPMT-GH-01-0021503). | |
dc.description.abstract | Sintering of ZnO pressed powder under Ar flow at temperatures between 1250 and 1300 degrees C leads to the formation of elongated microstructures and nanostructures, with different morphologies, on the sample surface. Rods and needles with cross-sectional dimensions ranging from tens of nanometres to several tens of microns and up to hundreds of microns in length are obtained. In an advanced stage of growth, nanoneedles are frequently arranged in bundles, forming the walls of tubes with different cross-sectional dimensions. In addition, microcombs and microfeathers consisting of well oriented nanoneedles are observed. Cathodoluminescence (CL) in the scanning electron microscope (SEM) has been used to characterize the structures grown. The formation of the elongated structures causes spectral changes, in particular an enhancement of the green-orange luminescence. High CL emission from the internal surface of the tubes has been observed. | |
dc.description.department | Depto. de Física de Materiales | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | MCYT | |
dc.description.sponsorship | CAM | |
dc.description.sponsorship | EU | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/26008 | |
dc.identifier.doi | 10.1088/0957-4484/16/6/051 | |
dc.identifier.issn | 0957-4484 | |
dc.identifier.officialurl | http://dx.doi.org/10.1088/0957-4484/16/6/051 | |
dc.identifier.relatedurl | http://iopscience.iop.org | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/51112 | |
dc.issue.number | 6 | |
dc.journal.title | Nanotechnology | |
dc.language.iso | eng | |
dc.page.final | 935 | |
dc.page.initial | 931 | |
dc.publisher | Iop Publishing Ltd | |
dc.relation.projectID | MAT2003-00455 | |
dc.relation.projectID | MAT/0630/2004 | |
dc.relation.projectID | HPMT-CT-2001-00215 | |
dc.relation.projectID | HPMT-GH-01-0021503 | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 538.9 | |
dc.subject.keyword | Optical-Properties | |
dc.subject.keyword | Zinc-Oxide | |
dc.subject.keyword | Room-Temperature | |
dc.subject.keyword | Photoluminescence | |
dc.subject.keyword | Nanowires | |
dc.subject.keyword | Mechanisms | |
dc.subject.keyword | Nanorods | |
dc.subject.keyword | Powders | |
dc.subject.ucm | Física de materiales | |
dc.title | Growth and spatially resolved luminescence of low dimensional structures in sintered ZnO | |
dc.type | journal article | |
dc.volume.number | 16 | |
dcterms.references | [1] Pan Z W, Dai Z R and Wang Z L 2001 Science 291 1947 [2] Huang M H, Mao S, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R and Yang P 2001 Science 292 1897 [3] Hu J Q and Bando Y 2003 Appl. Phys. Lett. 82 1401 [4] Ng H T, Chen B, Li J, Han J, MeyyapanM, Wu J, Li S X and Haller E E 2003 Appl. Phys. Lett. 82 1689 [5] Zhao D, Liu Y, Shen D, Lu Y, Zhang L and Fan X 2003 J. Appl. Phys. 94 5605 [6] Baxter J B,Wu F and Aydil E S 2003 Appl. Phys. Lett. 83 3797 [7] Xing Y J, Xi Z H, Xue Z Q, Zhang X D, Song J H, Wang R M, Xu J, Song Y, Zhang S L and Yu D P 2003 Appl. Phys. Lett. 83 1689 [8] Lee J-S, Park K, Kang M-I, Park I-W, Kim S-W, Cho W K, Han H S and Kim S 2003 J. Cryst. Growth 254 423 [9] Liu F, Gao P J, Zhang H R, Li J Q and Gao H J 2004 Nanotechnology 15 949 [10] Zhang Y, Jia H and Yu D 2004 J. Phys. D: Appl. Phys. 37 413 [11] Reynolds D C, Look D C and Jogai B 1996 Solid State Commun. 99 73 [12] Reynolds D C, Look D C, Jogai B and Morko¸c H 1997 Solid State Commun. 102 643 [13] Zu P, Tang Z K, Wong G K L, Kawasaki M, Ohtomo A, Koinuma H and Segawa Y 1997 Solid State Commun. 103 459 [14] Zhao Q X, WillanderM, Morjan R E, Hu Q H and Campbell E B 2003 Appl. Phys. Lett. 83 165 [15] Dai Y, Zhang Y, Li Q K and Nan C W 2002 Chem. Phys. Lett. 358 83 [16] Urbieta A, Fern´andez P and Piqueras J 2004 Appl. Phys. Lett. 85 5968 [17] Maestre D, Cremades A and Piqueras J 2005 J. Appl. Phys. 97 044316 [18] Wagner R S and Ellis W C 1964 Appl. Phys. Lett. 4 89 [19] Morales A M and Lieber C M 1998 Science 279 208 [20] Radoi R, Fern´andez P, Piqueras J, Wiggins M S and Solis J 2003 Nanotechnology 14 794 [21] Urbieta A, Fern´andez P, Piqueras J and Sekiguchi T 2001 Semicond. Sci. Technol. 16 589 [22] Vanheusden K, WarrenW L, Seager C H, Tallant D R, Voigt J A and Gnade B E 1996 J. Appl. Phys. 79 7983 [23] Roy V A L, Djuriˇsi´c A B, Chan W K, Gao J, Lui H F and Surya C 2003 Appl. Phys. Lett. 83 141 [24] Wang Z L, Kong X Y and Zuo J M 2003 Phys. Rev. Lett. 91 185502 [25] Wander A, Schedin F, Steadman P, Norris A, McGrath R, Turner T S, Thornton G and Harrison N M 2001 Phys. Rev. Lett. 86 3811 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | daf4b879-c4a8-4121-aaff-e6ba47195545 | |
relation.isAuthorOfPublication | 68dabfe9-5aec-4207-bf8a-0851f2e37e2c | |
relation.isAuthorOfPublication.latestForDiscovery | daf4b879-c4a8-4121-aaff-e6ba47195545 |
Download
Original bundle
1 - 1 of 1