Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

Bohmian-Based Approach to Gauss-Maxwell Beams

dc.contributor.authorSanz Ortiz, Ángel Santiago
dc.contributor.authorDavidović, Milena D.
dc.contributor.authorBožić, Mirjana
dc.date.accessioned2023-06-17T09:04:32Z
dc.date.available2023-06-17T09:04:32Z
dc.date.issued2020-03-06
dc.description.abstractUsual Gaussian beams are particular scalar solutions to the paraxial Helmholtz equation, which neglect the vector nature of light. In order to overcome this inconvenience, Simon et al. (J. Opt. Soc. Am. A 1986, 3, 536–540) found a paraxial solution to Maxwell’s equation in vacuum, which includes polarization in a natural way, though still preserving the spatial Gaussianity of the beams. In this regard, it seems that these solutions, known as Gauss-Maxwell beams, are particularly appropriate and a natural tool in optical problems dealing with Gaussian beams acted or manipulated by polarizers. In this work, inspired in the Bohmian picture of quantum mechanics, a hydrodynamic-type extension of such a formulation is provided and discussed, complementing the notion of electromagnetic field with that of (electromagnetic) flow or streamline. In this regard, the method proposed has the advantage that the rays obtained from it render a bona fide description of the spatial distribution of electromagnetic energy, since they are in compliance with the local space changes undergone by the time-averaged Poynting vector. This feature confers the approach a potential interest in the analysis and description of single-photon experiments, because of the direct connection between these rays and the average flow exhibited by swarms of identical photons (regardless of the particular motion, if any, that these entities might have), at least in the case of Gaussian input beams. In order to illustrate the approach, here it is applied to two common scenarios, namely the diffraction undergone by a single Gauss-Maxwell beam and the interference produced by a coherent superposition of two of such beams.
dc.description.departmentDepto. de Óptica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MICINN)/FEDER
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/65365
dc.identifier.doi10.3390/app10051808
dc.identifier.issn2076-3417
dc.identifier.officialurlhttps://doi.org/10.3390/app10051808
dc.identifier.relatedurlhttps://www.mdpi.com/2076-3417/10/5/1808
dc.identifier.urihttps://hdl.handle.net/20.500.14352/8106
dc.issue.number5
dc.journal.titleApplied Sciences
dc.language.isoeng
dc.page.initial1808
dc.publisherMDPI
dc.relation.projectIDFIS2016-76110-P
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.keywordGauss-Maxwell beams
dc.subject.keywordoptical ray
dc.subject.keywordBohmian mechanics
dc.subject.keyworddiffraction
dc.subject.keywordtwo-slit interference
dc.subject.keywordcoherence
dc.subject.ucmÓptica (Física)
dc.subject.unesco2209.19 Óptica Física
dc.titleBohmian-Based Approach to Gauss-Maxwell Beams
dc.typejournal article
dc.volume.number10
dspace.entity.typePublication
relation.isAuthorOfPublication73ba33ad-86c4-4345-961c-7e38f1dbcb9f
relation.isAuthorOfPublication.latestForDiscovery73ba33ad-86c4-4345-961c-7e38f1dbcb9f

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
applsci-10-01808.pdf
Size:
351.3 KB
Format:
Adobe Portable Document Format

Collections