Divergence-based estimation and testing with misclassified data
Loading...
Download
Full text at PDC
Publication date
2005
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Springer Verlag
Citation
Abstract
The well-known chi-squared goodness-of-fit test for a multinomial distribution is generally biased when the observations are subject to misclassification. In Pardo and Zografos (2000) the problem was considered using a double sampling scheme and phi-divergence test statistics. A new problem appears if the null hypothesis is not simple because it is necessary to give estimators for the unknown parameters. In this paper the minimum phi-divergence estimators are considered and some of their properties are established. The proposed phi-divergence test statistics are obtained by calculating phi-divergences between probability density functions and by replacing parameters by their minimum phi-divergence estimators in the derived expressions. Asymptotic distributions of the new test statistics are also obtained. The testing procedure is illustrated with an example