Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Characterizing posets with more linear extensions than ideals

dc.contributor.authorGarcía Segador, Pedro
dc.contributor.authorMiranda Menéndez, Pedro
dc.date.accessioned2024-07-04T17:01:52Z
dc.date.available2024-07-04T17:01:52Z
dc.date.issued2023
dc.description.abstractTwo of the most important invariants associated with a poset P are the number of linear extensions, e(P), and the number of order ideals, i(P). Many important techniques to generate random linear extensions assume that e(P) ≥ i(P) and consequently choose to deal with ideals instead of linear extensions. However, this condition does not hold for every poset. In this paper we characterize when this condition holds for chain-irreducible posets, providing a complete list of posets where this fails. The proof is divided into three parts: for non-connected posets, for connected posets whose width exceeds 2, and for connected posets with width 2. We also give some applications of this result.
dc.description.departmentDepto. de Estadística e Investigación Operativa
dc.description.facultyInstituto de Matemática Interdisciplinar (IMI)
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía y Competitividad
dc.description.statuspub
dc.identifier.officialurlhttps://ajc.maths.uq.edu.au/pdf/85/ajc_v85_p164.pdf
dc.identifier.urihttps://hdl.handle.net/20.500.14352/105663
dc.journal.titleAustralasian Journal of Combinatorics
dc.language.isoeng
dc.page.final194
dc.page.initial164
dc.publisherUniversity of Queensland
dc.relation.projectIDPGC2021-124933NB-100
dc.rightsAttribution-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/
dc.subject.ucmAnálisis combinatorio
dc.subject.ucmTeoría de conjuntos
dc.subject.unesco12 Matemáticas
dc.titleCharacterizing posets with more linear extensions than ideals
dc.typejournal article
dc.volume.number85
dspace.entity.typePublication
relation.isAuthorOfPublication5416c727-ae1e-4a30-9118-a87352c1a7be
relation.isAuthorOfPublicationd940fcaa-13c3-4bad-8198-1025a668ed71
relation.isAuthorOfPublication.latestForDiscovery5416c727-ae1e-4a30-9118-a87352c1a7be

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
miranda_posets.pdf
Size:
236.07 KB
Format:
Adobe Portable Document Format

Collections