Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Early Fire Detection on Video Using LBP and Spread Ascending of Smoke

dc.contributor.authorOlivares Mercado, Jesus
dc.contributor.authorToscano Medina, Karina
dc.contributor.authorSánchez Perez, Gabriel
dc.contributor.authorHernandez Suarez, Aldo
dc.contributor.authorPerez Meana, Hector
dc.contributor.authorSandoval Orozco, Ana Lucila
dc.contributor.authorGarcía Villalba, Luis Javier
dc.date.accessioned2023-06-17T12:39:09Z
dc.date.available2023-06-17T12:39:09Z
dc.date.issued2019
dc.description.abstractThis paper proposes a methodology for early fire detection based on visual smoke characteristics such as movement, color, gray tones and dynamic texture, i.e., diverse but representative and discriminant characteristics, as well as its ascending expansion, which is sequentially processed to find the candidate smoke regions. Thus, once a region with movement is detected, the pixels inside it that are smoke color are estimated to obtain a more detailed description of the smoke candidate region. Next, to increase the system efficiency and reduce false alarms, each region is characterized using the local binary pattern, which analyzes its texture and classifies it by means of a multi-layer perceptron. Finally, the ascending expansion of the candidate region is analyzed and those smoke regions that maintain or increase their ascending growth over a time span are considered as a smoke regions, and an alarm is triggered. Evaluations were performed using two different classifiers, namely multi-Layer perceptron and the support vector machine, with a standard database smoke video. Evaluation results show that the proposed system provides fire detection accuracy of between 97.85% and 99.83%.
dc.description.departmentDepto. de Ingeniería de Software e Inteligencia Artificial (ISIA)
dc.description.facultyFac. de Informática
dc.description.refereedTRUE
dc.description.sponsorshipUnión Europea. H2020
dc.description.sponsorshipNational Science and Technology Council of Mexico (CONACyT),
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/68485
dc.identifier.doi10.3390/su11123261
dc.identifier.issn2071-1050
dc.identifier.officialurlhttps://doi.org/10.3390/su11123261
dc.identifier.relatedurlhttps://www.mdpi.com/2071-1050/11/12/3261/htm
dc.identifier.urihttps://hdl.handle.net/20.500.14352/12706
dc.issue.number12
dc.journal.titleSustainability
dc.language.isoeng
dc.page.initial3261
dc.publisherMDPI
dc.relation.projectIDRAMSES (700326)
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.keywordsmoke detection
dc.subject.keywordMulti-Layer Perceptron
dc.subject.keywordArtificial Neural Network
dc.subject.keywordLocal Binary Pattern
dc.subject.keywordSupport Vector Machines
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.ucmRedes
dc.subject.unesco1203.04 Inteligencia Artificial
dc.titleEarly Fire Detection on Video Using LBP and Spread Ascending of Smoke
dc.typejournal article
dc.volume.number11
dspace.entity.typePublication
relation.isAuthorOfPublicationdea44425-99a5-4fef-b005-52d0713d0e0d
relation.isAuthorOfPublication0f67f6b3-4d2f-4545-90e1-95b8d9f3e1f0
relation.isAuthorOfPublication.latestForDiscoverydea44425-99a5-4fef-b005-52d0713d0e0d

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
sustainability-11-03261.pdf
Size:
4.3 MB
Format:
Adobe Portable Document Format

Collections