Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Congruences on G(1,4) with split universal quotient bundle

dc.contributor.authorArrondo Esteban, Enrique
dc.contributor.authorGraña Otero, Beatriz
dc.date.accessioned2023-06-20T09:31:59Z
dc.date.available2023-06-20T09:31:59Z
dc.date.issued2006
dc.description.abstractThis work provides a complete classification of the smooth three-folds in the Grassmann variety of lines in P-4, for which the restriction of the universal quotient bundle is a direct sum of two line bundles. For this purpose we use the geometrical interpretation of the splitting of the quotient bundle as well as the meaning of the number of the independent global sections of each of its summands.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio Español de Ciencia Y Tecnología
dc.description.sponsorshipEAGER
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/14810
dc.identifier.doihttp://dx.doi.org10.1016/j.geomphys.2005.06.008
dc.identifier.issn0393-0440
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/S0393044005000999
dc.identifier.urihttps://hdl.handle.net/20.500.14352/49828
dc.issue.number6
dc.journal.titleJournal of Geometry and Physics
dc.language.isoeng
dc.page.final1067
dc.page.initial1057
dc.publisherElsevie Science
dc.relation.projectIDBFM2000-062
dc.relation.projectIDEuropean contract PRN-CT-2000-00099
dc.rights.accessRightsrestricted access
dc.subject.cdu512.7
dc.subject.keywordGrassmann varieties
dc.subject.keywordquotient bundles
dc.subject.keywordcongruences
dc.subject.ucmGeometria algebraica
dc.subject.unesco1201.01 Geometría Algebraica
dc.titleCongruences on G(1,4) with split universal quotient bundle
dc.typejournal article
dc.volume.number56
dcterms.references[1] A. Alzati, 3-scroll immersions in G(1, 4), Ann. Univ. Ferrara 32 (1986) 45–54. [2] E. Arrondo, The universal rank-(n − 1) bundles on G(1, n) restricted to subvarieties, Collect. Math. 49 (2/3) (1998) 173–183, Dedicado a la memoria de Fernando Serrano. [3] E. Arrondo, Projections on Grassmannians of lines and characterization of Veronese varieties, J. Algebr. Geom. 8 (50) (1999) 85–101. [4] E. Arrondo, M. Bertolini, C. Turrini, Classification of Smooth Congruences with a Fundamental Curve, vol. 166, Marcel Dekker, 1994, pp. 43–56. [5] E. Arrondo, M. Bertolini, C. Turrini, Congruences of small degree inG(1, 4), Comm. Algebra 26 (10) (1998) 3249–3266. [6] E. Arrondo, M. Bertolini, C. Turrini, Quadric bundle congruences in G(1, n), Forum Math. 12 (2000) 649– 666. [7] E. Arrondo, I. Sols, On congruences of lines in the projective space,M´em. Soc. Math. France N.S. 50 (1992) 96. [8] B. Gra˜na, Escisi´on de fibrados en G(1, 4) y sus variedades, Ph.D. Thesis, Universidad Complutense de Madrid, January, 2003. [9] Z. Ran, Surfaces of order 1 in Grassmannians, J. Reine Angew. Math. 368 (1986) 119–126.
dspace.entity.typePublication
relation.isAuthorOfPublication5bd88a9c-e3d0-434a-a675-3221b2fde0e4
relation.isAuthorOfPublication.latestForDiscovery5bd88a9c-e3d0-434a-a675-3221b2fde0e4

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
10.pdf
Size:
148.12 KB
Format:
Adobe Portable Document Format

Collections