Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

Modeling, Simulation and Optimization of a Polluted Water Pumping Process in Open Sea

dc.conference.dateJune 4-6, 2013
dc.conference.placeHalifax, Nova Scotia, Canadá
dc.conference.title36th AMOP Technical Seminar on Environmental Contamination and Response
dc.contributor.authorGómez, Susana
dc.contributor.authorIvorra, Benjamín Pierre Paul
dc.contributor.authorRamos Del Olmo, Ángel Manuel
dc.contributor.authorGlowinski, Roland
dc.date.accessioned2023-06-19T16:04:23Z
dc.date.available2023-06-19T16:04:23Z
dc.date.issued2013-06
dc.description.abstractThe objective of this article is to find the optimal trajectory of a pumping (i.e., skimmer) ship, used to clean oil spots in the open sea, in order to pump the maximum quantity of pollutant on a fixed time period. We use a model previously developed to simulate the evolution of the oil spots concentration due to the coupling of diffusion, transport from the wind, sea currents and pumping process and reaction due to the extraction of oil. The trajectory of the ship is directly modeled by considering a finite number of interpolation points for cubic splines. The optimization problem is solved by using a global optimization algorithm based on the hybridization of a Genetic Algorithm with a Semi-Deterministic Secant Method, to improve the population. Finally, we check the efficiency of our approach by solving several numerical examples considering various shapes of oil spots based on real situations.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedFALSE
dc.description.sponsorshipMinisterio de Ciencia e Innovación (España)
dc.description.sponsorshipComunidad de Madrid
dc.description.sponsorshipBanco de Santander
dc.description.sponsorshipUniversidad Complutense
dc.description.statussubmitted
dc.eprint.idhttps://eprints.ucm.es/id/eprint/30253
dc.identifier.officialurlhttp://www.researchgate.net/publication/260752558_Modeling_simulation_and_optimization_of_a_polluted_water_pumping_process_in_open_sea
dc.identifier.relatedurlhttp://www.medess4ms.eu/news-archive/36th-amop-technical-seminar-on-environmental-contamination-and-response
dc.identifier.urihttps://hdl.handle.net/20.500.14352/36119
dc.language.isoeng
dc.page.initial18
dc.relation.projectIDMTM2008-04621/MTM
dc.relation.projectIDCONS-C6-0356 of the ''I-MATH Proyecto Ingenio Mathematica''
dc.relation.projectIDQUIMAPRES project S2009/PPQ-1551
dc.relation.projectIDPASPA project of the National University of Mexico
dc.rights.accessRightsopen access
dc.subject.cdu519.863:504.42
dc.subject.keywordSea pollution
dc.subject.keywordPumping ship
dc.subject.keywordReaction-Advection-Diffusion model
dc.subject.keywordOptimal trajectory
dc.subject.keywordGlobal Optimization
dc.subject.ucmHidrología
dc.subject.ucmInvestigación operativa (Matemáticas)
dc.subject.unesco2508 Hidrología
dc.subject.unesco1207 Investigación Operativa
dc.titleModeling, Simulation and Optimization of a Polluted Water Pumping Process in Open Sea
dc.typeconference paper
dcterms.referencesC. Alavani, R.Glowinski, S.Gomez, B.Ivorra, P.Joshi,A.M..Ramos Modelling and simulation of a polluted water pumping process. Mathematical and Computer Modelling, 51:461-472, 2010. A.P.G. Depollution. Website: http://apgdepollution.free.fr [Back, 200] Back, T., Fogel, D.B., Michalewicz, Z. (eds.) Evolutionary computation 1: basic algorithms and operators.IOP Publishing, Bristol, 2000. De Jong, K.A. Evolutionary Computation: a unified approach.MIT press, 2006. D. Di Serafino, S. Gomez, L. Milano, F. Riccio and G. Toraldo. A genetic algorithm for a global optimization problem arising in the detection of gravitational waves, Journal of Global Optimization, 48(1): 41-55, 2010. L. Debiane, B. Ivorra, B. Mohammadi, F. Nicoud, A. Ern, T. Poinsot, H.Pitsch. A low-complexity global optimization algorithm for temperature and pollution control in flames with complex chemistry. International Journal of Computational Fluid Dynamics, 20(2):93-98, 2006. R. Eymard, T. Gallouet, R. Herbin and A. Michel, Convergence of a finite volume scheme for nonlinear degenerate parabolic equations. Numer. Math., 92(1): 41-82, 2002. Fogel, D. B. An Introduction to Simulated Evolutionary Optimization. IEEE Trans.on Neural Networks: Special Issue on Evolutionary Computation, 5, 1994. R. Glowinski, P. Neittaanmaki, Partial Differential Equations. Modelling and Numerical Simulation, Series: Computational Methods in Applied Sciences, Springer,16,2008. D. Goldberg. Genetic algorithms in search, optimization and machine learning. Addison Wesley, 1989. S. Gomez, G. Severino, L. Randazzo, G. Toraldo, J.M. Otero. Identification of the hydraulic conductivity using a global optimization method, Agricultural Water Management, 93(3), 2009. S. Gomez, G. Fuentes, R. Camacho, M. Vasquez, J. M. Otero, A. Mesejo, N. del Castillo. Application of an Evolutionary Algorithm in well test characterization of Naturally Fractured Vuggy Reservoirs. Society of Petroleum Engineering, SPE No.103931, 2006. Holland, J. Adaptation in natural and artificial systems. Univ. Michigan Press, 1975. Herrera, F., Lozano, M., Verdegay, J.L.: Tackling real-coded genetic algorithms: operators and tools for behavioural analysis. Artif. Intell. Rev. 12(4): 265-319, 1998. W. Hundsdorfer, J.G. Verwer, Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations, Springer Series in Comput. Math. 33, 2003. B.Ivorra, B.Mohammadi, and A.M. Ramos. Optimization strategies in credit portfolio management. Journal Of Global Optimization, 43(3):415-427, 2009. B. Ivorra, B. Mohammadi, D.E. Santiago, and J.G. Hertzog. Semi-deterministic and genetic algorithms for global optimization of microfluidic protein folding devices. International Journal of Numerical Method in Engineering, 66(2):319-333, 2006. B.Ivorra, A.M. Ramos, and B.Mohammadi. Semideterministic global optimization method: Application to a control problem of the burgers equation. Journal of Optimization Theory and Applications, 135(3):549-561, 2007. C. Lanczos, Solution of Systems of Linear Equations by Minimized Iterations, J. Res. Natl. Bur. Stand. 49: 33-53, 1952. Maaranen, H., Miettinen, K., Penttinen, A. On initial populations of a genetic algorithm for continuous optimization problems.J. Glob. Optim. 37(3): 405-436, 2007. Michalewicz, Z. Genetic Algorithms + Data Structures = Evolution Programs, 3 edn. Springer, 1998. B. Mohammadi and J-H. Saiac. Pratique de la simulation numérique. Dunod, 2002. Office of response and restoration of the U.S. National Ocean Service. Website: http://response.restoration.noaa.gov. Office of response and restoration of the U.S. National Ocean Service. Incident News Home. Website: http://www.incidentnews.gov/famous. United States Coast Guards. Spilled Oil Recovery System. Website: http://www.uscg.mil/hq/nsfweb/nsfcc/ops/ResponseSupport/Equipment/sorsindex.asp, 2010. United States Environmental Protection Agency. Oil Spill Response Techniques. Website: http://www.epa.gov/emergencies/content/learning/oiltech.htm, 2009. H. A. Van der Vorst, Bi-CGSTAB : A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems, SIAM J. Sci. Stat. Comput. 13: 631-644,1992. E. K. Wilson. Oil Spill’s Size Swells. Chemical Engineering News. American Chemical Society. ISSN 0009-2347, 2010. J. Yoshida, M. Miki and Y. Sakata. Best Combinatorial Crossover in Genetic Algorithms. Joho Shori Gakkai Kenkyu Hokoku 2000(85): 41–44, 2000.
dspace.entity.typePublication
relation.isAuthorOfPublication6d5e1204-9b8a-40f4-b149-02d32e0bbed2
relation.isAuthorOfPublication581c3cdf-f1ce-41e0-ac1e-c32b110407b1
relation.isAuthorOfPublication.latestForDiscovery6d5e1204-9b8a-40f4-b149-02d32e0bbed2

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Ivorra41.pdf
Size:
887.14 KB
Format:
Adobe Portable Document Format