Estimates on the Derivative of a Polynomial with a Curved Majorant Using Convex Techniques
dc.contributor.author | Muñoz-Fernández, Gustavo A. | |
dc.contributor.author | Sánchez, V.M. | |
dc.contributor.author | Seoane Sepúlveda, Juan Benigno | |
dc.date.accessioned | 2023-06-20T00:18:25Z | |
dc.date.available | 2023-06-20T00:18:25Z | |
dc.date.issued | 2010 | |
dc.description.abstract | A mapping phi : [-1, 1] -> [0, infinity) is a curved majorant for a polynomial p in one real variable if vertical bar p(x)vertical bar <= phi(x) for all x is an element of [-1, 1]. If P(n)(phi)(R) is the set of all one real variable polynomials of degree at most n having the curved majorant phi, then we study the problem of determining, explicitly, the best possible constant M(n)(phi)(x) in the inequality vertical bar p'(x)vertical bar <= M(n)(phi)(x)parallel to p parallel to, for each fixed x is an element of [-1, 1], where p is an element of p(n)(phi)(R) and parallel to p parallel to is the sup norm of p over the interval [-1, 1]. These types of estimates are known as Bernstein type inequalities for polynomials with a curved majorant. The cases treated in this manuscript, namely phi(x) = root 1 - x(2) or phi(x) = vertical bar x vertical bar for an x is an element of [-1, 1] (circular and linear majorant respectively), were first studied by Rahman in [10]. In that reference the author provided, for each n is an element of N, the maximum of M(n)(phi)(x) over [-1, 1] as well as an upper bound for M(n)(phi)(x) for each x is an element of [-1, 1], where phi is either a circular or a linear majorant. Here we provide sharp Bernstein inequalities for some specific families of polynomials having a linear or circular majorant by means of classical convex analysis techniques (in particular we use the Krein-Milman approach). | |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Spanish Ministry of Education | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/16919 | |
dc.identifier.issn | 0944-6532 | |
dc.identifier.relatedurl | http://www.heldermann.de/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/42367 | |
dc.issue.number | 1 | |
dc.journal.title | Journal of Convex Analysis | |
dc.language.iso | eng | |
dc.page.final | 252 | |
dc.page.initial | 241 | |
dc.publisher | Heldermann Verlag | |
dc.relation.projectID | MTM2006-03531, MTM2005-00082 | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 517.518.28 | |
dc.subject.keyword | Bernstein type inequality | |
dc.subject.keyword | circular and linear majorants | |
dc.subject.keyword | extreme points | |
dc.subject.ucm | Análisis funcional y teoría de operadores | |
dc.title | Estimates on the Derivative of a Polynomial with a Curved Majorant Using Convex Techniques | |
dc.type | journal article | |
dc.volume.number | 17 | |
dcterms.references | R. M. Aron, M. Klimek: Supremum norms for quadratic polynomials, Arch. Math. 76 (2001) 73–80. A. A. Markov: On a problem of D. I. Mendeleev, Zap. Im. Akad. Nauk. 62 (1889) 1–24 (in Russian). A. A. Markov: On a question by D. I. Mendeleev, available at: http://www.math. technion.ac.il/hat/papers.html. S. Bernstein: Sur l’ordre de la meilleure approximation des fonctions continues par des polynomes de degr´e donn´e, Acad. Roy. Belg. Cl. Sci. M´em. 4 (1912) 1–103. S. Bernstein: Collected Works: Vol. I. The Constructive Theory of Functions (1905–1939), Atomic Energy Commission, Springfield (1958). R. P. Boas: Inequalities for the derivatives of polynomials, Math. Mag. 42 (1969) 165–174. G. A. Muñoz-Fernández, Y. Sarantopoulos: Bernstein and Markov-type inequalities for polynomials on real Banach spaces, Math. Proc. Camb. Philos. Soc. 133 (2002) 515–530. G. A. Muñoz-Fernández, Y. Sarantopoulos, J. B. Seoane-Sepúlveda: An application of the Krein-Milman theorem to Bernstein and Markov inequalities, J. Convex Analysis 15 (2008) 299–312. G. A. Muñoz-Fernández, J. B. Seoane-Sepúlveda: Geometry of Banach spaces of trinomials, J. Math. Anal. Appl. 340 (2008) 1069–1087. Q. I. Rahman: On a problem of Tur´an about polynomials with curved majorants, Trans. Amer. Math. Soc. 163 (1972) 447–455. E. V. Voronovskaja: The functional of the first derivative and improvement of a theorem of A. A. Markov, Izv. Akad. Nauk SSSR, Ser. Mat. 23 (1959) 951–962 (in Russian). E. V. Voronovskaja: The Functional Method and its Applications, AMS, Providence(1970). | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | e85d6b14-0191-4b04-b29b-9589f34ba898 | |
relation.isAuthorOfPublication.latestForDiscovery | e85d6b14-0191-4b04-b29b-9589f34ba898 |
Download
Original bundle
1 - 1 of 1