Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

The Mechanism of Hydrolysis of Aryldiazonium Ions Revisited: Marcus Theory vs. Canonical Variational Transition State Theory

dc.contributor.authorGarcía Martínez, Antonio
dc.contributor.authorMoya Cerero, Santiago de la
dc.contributor.authorOsío Barcina, José De Jesús
dc.contributor.authorMoreno Jiménez, Florencio
dc.contributor.authorLora Maroto, Beatriz
dc.date.accessioned2023-06-19T13:49:34Z
dc.date.available2023-06-19T13:49:34Z
dc.date.issued2013-08-01
dc.descriptionIssue Online: 11 September 2013; Version of Record online: 01 August 2013; Manuscript received: 05 June 2013
dc.description.abstractSeveral models, theoretical levels and computational methods, all based on the canonical variational transition state approximation, have been used to predict both the experimental activation energies (ΔEexp≠) and the experimental activation free energies (ΔGexp≠) for the hydrolysis of aryldiazonium ions. It is demonstrated that the computation of activation energies (ΔE≠), instead of activation free energies (ΔG≠), agrees better with the corresponding experimental data, showing that the employed computational methods do not afford reliable entropic contributions to the free energy barriers in the case of the studied reaction. However, the most fitted computations of ΔE≠ were not able to clearly differentiate between the mechanisms proposed for this interesting reaction (SN1, SN2 and water cluster). In contrast, the use of the Marcus theory (hyperbolic-cosine equation) instead of the canonical variational transition state theory leads to excellent agreement between the in-water-computed activation energies (ΔEwM≠) and the corresponding ΔEexp≠ values for the SN2 mechanism, but far beyond the limit of error for the SN1 process. The validity of the Marcus theory for the studied SN1 and SN2 reactions is ensured by the fact that both reactions can be described as SET processes. On the other hand, apparently compelling evidence against the SN2 mechanism, such as 13C KIEs and experimental observation of N2 scrambling, are also discussed and alternative explanations are proposed.
dc.description.departmentSección Deptal. de Química Orgánica (Óptica y Optometría)
dc.description.departmentDepto. de Química Orgánica
dc.description.facultyFac. de Óptica y Optometría
dc.description.facultyFac. de Ciencias Químicas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/71049
dc.identifier.doi10.1002/ejoc.201300834
dc.identifier.issn1434-193X
dc.identifier.officialurlhttps://doi.org/10.1002/ejoc.201300834
dc.identifier.urihttps://hdl.handle.net/20.500.14352/34484
dc.issue.number27
dc.journal.titleEuropean Journal of Organic Chemistry
dc.language.isoeng
dc.page.final6107
dc.page.initial6098
dc.publisherElsevier B.V.
dc.rights.accessRightsrestricted access
dc.subject.cdu542.9
dc.subject.cdu66.094.941
dc.subject.keywordReaction mechanisms
dc.subject.keywordDensity functional calculations
dc.subject.keywordCations
dc.subject.keywordHydrolysis
dc.subject.keywordNucleophilic substitution
dc.subject.ucmQuímica orgánica (Química)
dc.subject.unesco2306 Química Orgánica
dc.titleThe Mechanism of Hydrolysis of Aryldiazonium Ions Revisited: Marcus Theory vs. Canonical Variational Transition State Theory
dc.typejournal article
dspace.entity.typePublication
relation.isAuthorOfPublication7940c6e8-25c3-4083-b533-0c34e155dfa8
relation.isAuthorOfPublicationf5145b06-61f4-459e-8799-39f470c67742
relation.isAuthorOfPublication09111c59-3829-4b92-a9d2-ee099b545e9e
relation.isAuthorOfPublication9effe766-cd79-4fbc-8042-9967320f8a30
relation.isAuthorOfPublication.latestForDiscovery09111c59-3829-4b92-a9d2-ee099b545e9e

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
European J Organic Chem - 2013 - Garc a Mart nez - The Mechanism of Hydrolysis of Aryldiazonium Ions Revisited Marcus.pdf
Size:
401.74 KB
Format:
Adobe Portable Document Format

Collections