Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

A methodology for hierarchical image segmentation evaluation

dc.book.titleInformation Processing and Management of Uncertainty in Knowledge-Based Systems
dc.contributor.authorRodríguez González, Juan Tinguaro
dc.contributor.authorGuada, Carely
dc.contributor.authorGómez González, Daniel
dc.contributor.authorYáñez Gestoso, Francisco Javier
dc.contributor.authorMontero De Juan, Francisco Javier
dc.contributor.editorCarvalho, Joao Paulo
dc.contributor.editorLesot, Marie-Jeanne
dc.contributor.editorKaymak, Uzay
dc.contributor.editorVieira, Susana
dc.contributor.editorBouchon-Meunier, Bernadette
dc.contributor.editorYager, Ronald R.
dc.date.accessioned2023-06-18T07:15:31Z
dc.date.available2023-06-18T07:15:31Z
dc.date.issued2016
dc.description16th International Conference, IPMU 2016 Eindhoven, The Netherlands, June 20–24, 2016 Proceedings.
dc.description.abstractThis paper proposes a method to evaluate hierarchical image segmentation procedures, in order to enable comparisons between different hierarchical algorithms and of these with other (non-hierarchical) segmentation techniques (as well as with edge detectors) to be made. The proposed method builds up on the edge-based segmentation evaluation approach by considering a set of reference human segmentations as a sample drawn from the population of different levels of detail that may be used in segmenting an image. Our main point is that, since a hierarchical sequence of segmentations approximates such population, those segmentations in the sequence that best capture each human segmentation level of detail should provide the basis for the evaluation of the hierarchical sequence as a whole. A small computational experiment is carried out to show the feasibility of our approach.en
dc.description.departmentDepto. de Estadística e Investigación Operativa
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia, Innovación y Universidades (España)
dc.description.sponsorshipComunidad de Madrid
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/39024
dc.identifier.citationRodríguez, J.T., Guada, C., Gómez, D., Yáñez, J., Montero, J.: A Methodology for Hierarchical Image Segmentation Evaluation. En: Carvalho, J.P., Lesot, M.-J., Kaymak, U., Vieira, S., Bouchon-Meunier, B., y Yager, R.R. (eds.) Information Processing and Management of Uncertainty in Knowledge-Based Systems. pp. 635-647. Springer International Publishing, Cham (2016)
dc.identifier.doi10.1007/978-3-319-40596-4_53
dc.identifier.isbn978-3-319-40596-4
dc.identifier.officialurlhttp://dx.doi.org/10.1007/978-3-319-40596-4_53
dc.identifier.urihttps://hdl.handle.net/20.500.14352/24888
dc.issue.number610
dc.language.isoeng
dc.page.final647
dc.page.initial635
dc.page.total738
dc.publisherSpringer
dc.relation.ispartofseriesCommunications in Computer and Information Science
dc.relation.projectIDTIN2012-32482
dc.relation.projectIDS2013/ICE-2845
dc.rights.accessRightsrestricted access
dc.subject.cdu519.22
dc.subject.keywordEdge-based image segmentation evaluation
dc.subject.keywordHierarchical network clustering
dc.subject.keywordImage segmentation
dc.subject.ucmEstadística matemática (Matemáticas)
dc.subject.unesco1209 Estadística
dc.titleA methodology for hierarchical image segmentation evaluationen
dc.typebook part
dc.volume.numberI
dspace.entity.typePublication
relation.isAuthorOfPublicationddad170a-793c-4bdc-b983-98d313c81b03
relation.isAuthorOfPublication4dcf8c54-8545-4232-8acf-c163330fd0fe
relation.isAuthorOfPublication5ce22aab-a4c1-4dfe-b8f9-78e09cbd2878
relation.isAuthorOfPublication9e4cf7df-686c-452d-a98e-7b2602e9e0ea
relation.isAuthorOfPublication.latestForDiscoveryddad170a-793c-4bdc-b983-98d313c81b03

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
RodGonz12.pdf
Size:
1.03 MB
Format:
Adobe Portable Document Format