A methodology for hierarchical image segmentation evaluation
dc.book.title | Information Processing and Management of Uncertainty in Knowledge-Based Systems | |
dc.contributor.author | Rodríguez González, Juan Tinguaro | |
dc.contributor.author | Guada, Carely | |
dc.contributor.author | Gómez González, Daniel | |
dc.contributor.author | Yáñez Gestoso, Francisco Javier | |
dc.contributor.author | Montero De Juan, Francisco Javier | |
dc.contributor.editor | Carvalho, Joao Paulo | |
dc.contributor.editor | Lesot, Marie-Jeanne | |
dc.contributor.editor | Kaymak, Uzay | |
dc.contributor.editor | Vieira, Susana | |
dc.contributor.editor | Bouchon-Meunier, Bernadette | |
dc.contributor.editor | Yager, Ronald R. | |
dc.date.accessioned | 2023-06-18T07:15:31Z | |
dc.date.available | 2023-06-18T07:15:31Z | |
dc.date.issued | 2016 | |
dc.description | 16th International Conference, IPMU 2016 Eindhoven, The Netherlands, June 20–24, 2016 Proceedings. | |
dc.description.abstract | This paper proposes a method to evaluate hierarchical image segmentation procedures, in order to enable comparisons between different hierarchical algorithms and of these with other (non-hierarchical) segmentation techniques (as well as with edge detectors) to be made. The proposed method builds up on the edge-based segmentation evaluation approach by considering a set of reference human segmentations as a sample drawn from the population of different levels of detail that may be used in segmenting an image. Our main point is that, since a hierarchical sequence of segmentations approximates such population, those segmentations in the sequence that best capture each human segmentation level of detail should provide the basis for the evaluation of the hierarchical sequence as a whole. A small computational experiment is carried out to show the feasibility of our approach. | en |
dc.description.department | Depto. de Estadística e Investigación Operativa | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Ministerio de Ciencia, Innovación y Universidades (España) | |
dc.description.sponsorship | Comunidad de Madrid | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/39024 | |
dc.identifier.citation | Rodríguez, J.T., Guada, C., Gómez, D., Yáñez, J., Montero, J.: A Methodology for Hierarchical Image Segmentation Evaluation. En: Carvalho, J.P., Lesot, M.-J., Kaymak, U., Vieira, S., Bouchon-Meunier, B., y Yager, R.R. (eds.) Information Processing and Management of Uncertainty in Knowledge-Based Systems. pp. 635-647. Springer International Publishing, Cham (2016) | |
dc.identifier.doi | 10.1007/978-3-319-40596-4_53 | |
dc.identifier.isbn | 978-3-319-40596-4 | |
dc.identifier.officialurl | http://dx.doi.org/10.1007/978-3-319-40596-4_53 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/24888 | |
dc.issue.number | 610 | |
dc.language.iso | eng | |
dc.page.final | 647 | |
dc.page.initial | 635 | |
dc.page.total | 738 | |
dc.publisher | Springer | |
dc.relation.ispartofseries | Communications in Computer and Information Science | |
dc.relation.projectID | TIN2012-32482 | |
dc.relation.projectID | S2013/ICE-2845 | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 519.22 | |
dc.subject.keyword | Edge-based image segmentation evaluation | |
dc.subject.keyword | Hierarchical network clustering | |
dc.subject.keyword | Image segmentation | |
dc.subject.ucm | Estadística matemática (Matemáticas) | |
dc.subject.unesco | 1209 Estadística | |
dc.title | A methodology for hierarchical image segmentation evaluation | en |
dc.type | book part | |
dc.volume.number | I | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | ddad170a-793c-4bdc-b983-98d313c81b03 | |
relation.isAuthorOfPublication | 4dcf8c54-8545-4232-8acf-c163330fd0fe | |
relation.isAuthorOfPublication | 5ce22aab-a4c1-4dfe-b8f9-78e09cbd2878 | |
relation.isAuthorOfPublication | 9e4cf7df-686c-452d-a98e-7b2602e9e0ea | |
relation.isAuthorOfPublication.latestForDiscovery | ddad170a-793c-4bdc-b983-98d313c81b03 |
Download
Original bundle
1 - 1 of 1