Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Countable powers of compact Abelian groups in the uniform topology and cardinality of their dual groups

dc.contributor.authorDikranjan, Dikran
dc.contributor.authorMartín Peinador, Elena
dc.contributor.authorTarieladze, Vaja
dc.date.accessioned2023-06-19T13:22:57Z
dc.date.available2023-06-19T13:22:57Z
dc.date.issued2014
dc.description.abstractWe equip the product of countably many copies of a compact Abelian group X with the uniform topology, and study some properties of the topological group G thus obtained. In particular, we determine the cardinality of the dual group of G, when X is the circle group: it is precisely 2^c.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.facultyInstituto de Matemática Interdisciplinar (IMI)
dc.description.refereedFALSE
dc.description.statussubmitted
dc.eprint.idhttps://eprints.ucm.es/id/eprint/24220
dc.identifier.officialurlhttp://arxiv.org/abs/1305.7369
dc.identifier.relatedurlhttp://arxiv.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/33450
dc.language.isoeng
dc.rights.accessRightsopen access
dc.subject.cdu515.1
dc.subject.keywordCharacter
dc.subject.keyworddual group
dc.subject.keyworduniform topology
dc.subject.keywordconnected group
dc.subject.keywordprecompact group
dc.subject.keywordlocally quasiconvex group.
dc.subject.ucmTopología
dc.subject.unesco1210 Topología
dc.titleCountable powers of compact Abelian groups in the uniform topology and cardinality of their dual groups
dc.typejournal article
dcterms.referencesA.V. Arhangel’skii and M.G. Tkachenko, Topological Groups and Related Structures, Atlantis Series in Mathematics, Vol. I, Atlantis Press/World Scientific, Paris–Amsterdam 2008. H. Anzai and S. Kakutani, Bohr compactifications of a locally compact Abelian group. II. Proc. Imp. Acad. Tokyo 19, (1943). 533–539. L. Aussenhofer, Contributions to the duality theory of abelian topological groups and to the theory of nuclear groups, Diss. Math. CCCLXXXIV. Warsaw, 1999. W. Banaszczyk, Additive Subgroups of Topological Vector Spaces. Lecture Notes in Mathematics, 1466. Springer-Verlag, Berlin, 1991. N. Bourbaki, Elements de mathematique. Premiere partie, Livre III: Topologie Generale. Chapitre X: Espaces Fonctionels. M. J. Chasco, E. Martín-Peinador and V. Tarieladze, On Mackey Topology for groups, Stud. Math. 132, No.3, 257-284 (1999). WW. Comfort and Kenneth A. Ross, Pseudocompactness and uniform continuity in topological groups. Pacific J.Math. 16 (1966) 483–496. D. Dikranjan, E. Mart´ın-Peinador and V. Tarieladze, Group valued null sequences and metrizable non-Mackey groups. Forum Math. Published Online: 2012.02.03. D. Dikranjan, Iv. Prodanov and L. Stoyanov, Topological Groups: Characters, Dualities and Minimal Group Topologies, Pure and Applied Mathematics, vol. 130, Marcel Dekker Inc., New York-Basel, 1989. R. Engelking, General topology, Panstwowe Wydawnictwo Naukowe, 1985. G. Fichtenhollz and L. Kantorovitch, Sur les operations lineaires dans l’espace ses fonctions bornees. Studia Math. 5(1934),69–98. S.S.Gabriyelyan,Groups of quasi-invariance and the Pontryagin duality.Topology and its Applications, 157 (2010), 2786–2802. E. Hewitt, and Kenneth A. Ross, Abstract Harmonic Analysis I. Die Grüundlehren der Mathematischen Wissenschaften 115. Springer-Verlag 1963. S. Kakutani, On cardinal numbers related with a compact Abelian group. Proc. Imp. Acad. Tokyo 19, (1943). 366–372. J.W. Nienhuys, A solenoidal and monothetic minimally almost periodic group. Fund.Math. 73(1971/72),no.2,167–169. S. Rolewicz, Some remarks on monothetic groups, Colloq. Math. XIII ( 1964), 28–29. L. J. Sulley, On countable inductive limits of locally compact abelian groups. J. London Math. Soc.5 (1972), pp. 629–637. A. Weil, L’integration dans les groupes topologiques et ses applications. (French) Actual. Sci. Ind., no. 869. Hermann et Cie., Paris, 1940. 158 pp N. Ya. Vilenkin, The theory of characters of topological Abelian groups with boundedness given, Izvestiya Akad. Nauk SSSR. Ser. Mat. 15 (1951), 439–162.
dspace.entity.typePublication
relation.isAuthorOfPublication0074400c-5caa-43fa-9c45-61c4b6f02093
relation.isAuthorOfPublication26c13c99-272d-4261-8a6b-caef686ac19b
relation.isAuthorOfPublication.latestForDiscovery0074400c-5caa-43fa-9c45-61c4b6f02093

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
MPeinador123.pdf
Size:
151.91 KB
Format:
Adobe Portable Document Format

Collections