Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

3D scaffold with effective multidrug sequential release against bacteria biofilm

dc.contributor.authorGarcía Álvarez, Rafaela
dc.contributor.authorIzquierdo Barba, Isabel
dc.contributor.authorVallet Regí, María Dulce Nombre
dc.date.accessioned2023-06-17T21:49:16Z
dc.date.available2023-06-17T21:49:16Z
dc.date.issued2016-11-11
dc.descriptionORCID 0000-0002-6104-4889 (María Vallet Regí) RESEARCHER ID M-3378-2014 (María Vallet Regí)
dc.description.abstractBone infection is a feared complication following surgery or trauma that remains as an extremely difficult disease to deal with. So far, the outcome of therapy could be improved with the design of 3D implants, which combine the merits of osseous regeneration and local multidrug therapy so as to avoid bacterial growth, drug resistance and the feared side effects. Herein, hierarchical 3D multidrug scaffolds based on nanocomposite bioceramic and polyvinyl alcohol (PVA) prepared by rapid prototyping with an external coating of gelatin-glutaraldehyde (Gel-Glu) have been fabricated. These 3D scaffolds contain three antimicrobial agents (rifampin, levofloxacin and vancomycin), which have been localized in different compartments of the scaffold to obtain different release kinetics and more effective combined therapy. Levofloxacin was loaded into the mesopores of nanocomposite bioceramic part, vancomycin was localized into PVA biopolymer part and rifampin was loaded in the external coating of Gel-Glu. The obtained results show an early and fast release of rifampin followed by sustained and prolonged release of vancomycin and levofloxacin, respectively, which are mainly governed by the progressive in vitro degradability rate of these scaffolds. This combined therapy is able to destroy Gram-positive and Gram-negative bacteria biofilms as well as inhibit the bacteria growth; in addition, these multifunctional scaffolds exhibit excellent bioactivity as well as good biocompatibility with complete cell colonization of preosteoblast in the entire surface, ensuring good bone regeneration. These findings suggest that these hierarchical 3D multidrug scaffolds are promising candidates as platforms for local bone infection therapy.
dc.description.departmentDepto. de Química en Ciencias Farmacéuticas
dc.description.facultyFac. de Farmacia
dc.description.refereedTRUE
dc.description.sponsorshipUnión Europea. H2020
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO)
dc.description.statusinpress
dc.eprint.idhttps://eprints.ucm.es/id/eprint/40847
dc.identifier.doidoi.org/10.1016/j.actbio.2016.11.028
dc.identifier.issn1742-7061
dc.identifier.officialurlhttps://doi.org/10.1016/j.actbio.2016.11.028
dc.identifier.urihttps://hdl.handle.net/20.500.14352/17590
dc.issue.number49
dc.journal.titleActa Biomaterialia
dc.language.isoeng
dc.page.final126
dc.page.initial113
dc.publisherElsevier
dc.relation.projectIDVERDI (694160)
dc.relation.projectIDCSO2010-11384-E; MAT2015-64831-R; MAT2013-43299-R
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subject.cdu66
dc.subject.cdu546
dc.subject.cdu615.46
dc.subject.keywordMultidrug 3D scaffold
dc.subject.keywordcombined therapy
dc.subject.keywordbiofilm
dc.subject.keywordGram-positive bacteria
dc.subject.keywordGran-negative bacteria and sequential antimicrobial delivery.
dc.subject.ucmBioquímica (Química)
dc.subject.ucmMateriales
dc.subject.ucmQuímica inorgánica (Química)
dc.subject.unesco3312 Tecnología de Materiales
dc.subject.unesco2303 Química Inorgánica
dc.title3D scaffold with effective multidrug sequential release against bacteria biofilm
dc.typejournal article
dcterms.references[1] D. Campoccia, L. Montanaro, C.R. Arciola, The significance of infection related to orthopedic devices and issues of antibiotic resistance, Biomaterials 27 (2006) 2331–2339. [2] D. Lew, F. Waldvogel, Osteomyelitis, Lancet 364 (2004) 369–379. [3] I. Izquierdo-Barba, M. Colilla, M. Vallet-Regí, Zwitterionic ceramics for biomedical applications, Acta Biomater. 40 (2016) 201–211. [4] S. Mandal, A.R. Berendt, S.J. Peacock, Staphylococcus aureus bone and joint infection, J. Infect. 44 (2002) 143–151. [5] C.R. Arciola, D. Campoccia, P. Speziale, L. Montanaro, J.W. Costerton, Biofilm formation in Staphylococcus implant infections. A review of molecular mechanisms and implications for biofilm-resistant materials, Biomaterials 33 (2012) 5967–5982. [6] J.T. Mader, M.E. Shirtliff, S.C. Bergquist, J. Calhoun, Antimicrobial treatment of chronic osteomyelitis, Clin. Orthop. Relat. Res. 360 (1999) 47–65. [7] R.O. Darouiche, Treatment of infections associated with surgical implants, N. Engl. J. Med. 350 (2004) 1422–1429. [8] B. Parsons, E. Strauss, Surgical management of chronic osteomyelitis, Am. J. Surg. 188 (2004) 57–66. [9] R. Haidar, A. Der Boghossian, B. Atiyeh, Duration of post-surgical antibiotics in chronic osteomyelitis: empiric or evidence-based?, Int J. Infect. Dis. 14 (2010) 752–758. [10] A.H. Simpson, M. Deakin, J.M. Latham, Chronic osteomyelitis: the effect of the extent of surgical resection on infection-free survival, J. Bone Joint Surg. Br. 83 (2001) 403–407. [11] G. Radcliffe, Osteomyelitis – a historical and basic science review, Orthop. Trauma 29 (2015) 243–252. [12] J.W. Costerton, L. Montanaro, C.R. Arciola, Biofilm in implant infections: its production and regulation, Int. J. Artif. Organs 28 (2005) 1062–1068. [13] P.S. Stewart, J.W. Costerton, Antibiotic resistance of bacteria in biofilms, Lancet 358 (2001) 135–138. [14] K. Dong, E. Ju, N. Gao, Z. Wang, J. Ren, X. Qu, Synergistic eradication of antibiotic-resistant bacteria based biofilms in vivo using a NIR-sensitive nanoplatform, Chem. Commun. 52 (2016) 5312–5315. [15] H. Sun, N. Gao, K. Dong, J. Ren, X. Qu, Graphene quantum dots-band-aids used for wound disinfection, ACS Nano 8 (2014) 6202–6210. [16] Z. Liu, J. Liu, R. Wang, Y. Du, J. Ren, X. Qu, An efficient nano-based theranostic system for multi-modal imaging-guided photothermal sterilization in gastrointestinal tract, Biomaterials 56 (2015) 206–218. [17] M. Vallet-Regí, Ordered mesoporous materials in the context of drug delivery systems and bone tissue engineering, Chem. Eur. J. 12 (2006) 5934–5943. [18] M. Vallet-Regí, I. Izquierdo-Barba, M. Colilla, Bioceramics for bone tissue regeneration and local structure and functionalization of mesoporous delivery, Philos. Trans. R. Soc. A 370 (2012) 1400–1421. [19] Z. Fereshteh, M. Fathic, A. Bagrie, A.R. Boccaccini, Preparation and characterization of aligned porous PCL/zein scaffolds as drug delivery systems via improved unidirectional freeze-drying method, Mater. Sci. Eng. C 68 (2016) 613–622. [20] L.H. Charlotte, L.L. Wei, S.C. Loo Joachim, Drug-eluting scaffolds for bone and cartilage regeneration, Drug Discov. Today 19 (2014) 714–724. [21] D. Arcos, A.R. Boccaccini, M. Bohner, A. Díez-Pérez, M. Epple, E. Gómez- Barrena, A. Herrera, J.A. Planell, L. Rodríguez-Mañas, M. Vallet-Regí, The relevance of biomaterials to the prevention and treatment of osteoporosis, Acta Biomater. 10 (2014) 1793–1805. [22] M. Vallet-Regí, Bio-Ceramics With Clinical Applications, John Wiley & Sons Ltd, Chichester, United Kingdom, 2014. [23] E. Verron, J.M. Bouler, J. Guicheux, Controlling the biological function of calcium phosphate bone substitutes with drugs, Acta Biomater. 8 (2012) 3541–3551. [24] A. Ekenseair, F. Kasper, A. Mikos, Perspectives on the interface of drug delivery and tissue engineering, Adv. Drug Deliv. Rev. 65 (2013) 89–92. [25] G.J.A. Boo, D.W. Grijpma, T.F. Moriarty, R.G. Richards, Antimicrobial delivery systems for local infection prophylasis in orthopaedic and trauma surgery, Biomaterials 52 (2015) 113–125. [26] D. Campoccia, L. Montanaro, C.R. Arciola, A review of the clinical implications of anti-infective biomaterials and infection-resistant surfaces, Biomaterials 34 (2013) 8018–8029. [27] M. Cicuéndez, M.T. Portolés, I. Izquierdo-Barba, M. Vallet-Regí, New nanocomposite system with nanocrystalline apatite embedded into mesoporous bioactive glass, Chem. Mater. 24 (2012) 1100–1106. [28] M. Cicuéndez, M. Malstem, J.C. Doadrio, M.T. Portolés, I. Izquierdo-Barba, M. Vallet-Regí, Tailoring hierarchical meso-macroporous 3D scaffolds: from nano to macro, J. Mater. Chem. B 2 (2014) 49–58. [29] M. Cicuéndez, P. Portolés, M. Montes-Casado, I. Izquierdo-Barba, M. Vallet- Regí, M.T. Portolés, Effects of 3D nanocomposite bioceramic scaffolds on the immune response, J. Mater. Chem. B 2 (2014) 3469–3479. [30] M. Cicuéndez, I. Izquierdo-Barba, M.T. Portolés, M. Vallet-Regí, Biocompatibility and levofloxacin delivery of mesoporous materials, Eur. J. Pharm. Biopharm. 84 (2013) 115–124. [31] A. Butscher, M. Bohner, S. Hofmann, L. Gauckler, R. Muller, Structural and material approaches to bone tissue engineering in powder-based threedimensional printing, Acta Biomater. 7 (2011) 907–920. [32] H.S. Yun, S.E. Kim, Y.T. Hyeon, Design and preparation of bioactive glasses with hierarchical pore networks, Chem. Commun. 21 (2007) 2139–2141. [33] A. García, I. Izquierdo-Barba, M. Colilla, C. López de Laorden, M. Vallet-Regí, Preparation of 3D scaffolds in the SiO2–P2O5 system with tailored hierarchical mesomacroporosity, Acta Biomater. 7 (2011) 1265–1273. [34] L. Meseguer, V. Vicente, M. Alcaraz, J.L. Calvo, M. Vallet-Regí, D. Arcos, A. Baeza, In vivo behavior of Si-hydroxyapatite/polycaprolactone/DMB scaffolds fabricated by 3D printing, Biomed. Mater. Res. A 101 (2013) 2038–2048. [35] I. Izquierdo-Barba, M. Vallet-Regí, Mesoporous bioactive glasses: relevance of their porous structure compared to that of classical bioglasses, Biomed. Glasses 1 (2015) 140–150. [36] C. Wu, Y. Luo, G. Cuniberti, Y. Xiao, M. Genlinsky, Three-dimensional printing of hierarchical and tough mesoporous bioactive glass scaffolds with a controllable pore architecture, excellent mechanical strength and mineralization ability, Acta Biomater. 7 (2011) 2644–2650. [37] J.Y. Chun, K.H. Kang, L. Jeong, Y.O. Kang, J.E. Oh, I.S. Yeo, S.Y. Jung, W.H. Park, B. M. Ming, Epidermal cellular response to poly(vinyl alcohol) nanofibers containing silver nanoparticles, Colloids Surf. B: Biointerfaces 78 (2010) 334–342. [38] M. Santoro, A.M. Tatara, A.G. Mikos, Gelatin carriers for drug and cell delivery in tissue engineering, J. Control. Release 190 (2014) 210–218. [39] M. Cicuéndez, I. Izquierdo-Barba, S. Sánchez-Salcedo, M. Vila, M. Vallet-Regí, Biological performance of hydroxyapatite–biopolymer foams: in vitro cell response, Acta Biomater. 8 (2012) 802–810. [40] J. Gil-Albarova, M. Vila, J. Badiola-Vargas, S. Sánchez-Salcedo, A. Herrera, M. Vallet-Regí, In vivo osteointegration of three-dimensional crosslinked gelatincoated hydroxyapatite foams, Acta Biomater. 8 (2012) 3777–3783. [41] L.A. Mitscher, Bacterial topoisomerase inhibitors: quinolone and pyridone antibacterial agents, Chem. Rev. 105 (2005). 559–9. [42] R.N. Greenberg, M.T. Newman, S. Shariaty, R.W. Pectol, Ciprofloxacin, lomefloxacin or levofloxacin as treatment for chronic osteomyelitis, Antimicrob. Agents Chemother. 44 (2000) 164–166. [43] F.R. Bruniera, F.M. Ferreira, L.R. Saviolli, M.R. Bacci, D. Feder, M. da Luz Gonçalves Pedreira, M.A. Sorgini Peterlini, L.A. Azzalis, V.B. Campos Junqueira, F.L. Fonseca, The use of vancomycin with its therapeutic and adverse effects: a review, Eur. Rev. Med. Pharmacol. Sci. 19 (2015) 694–700. [44] F.K. Gould, R. Brindle, P.R. Chadwick, A.P. Fraise, S. Hill, D. Nathwani, G.L. Ridgway, M.J. Spry, R.E. Warren, M.R.S.A. Working, Party of the British Society for Antimicrobial Chemotherapy. Guideline for the prophylaxis and treatment of methicillin-resistant Staphylococcus aureus (MRSA) infections in the United Kingdom, J. Antimicrob. Chemother. 63 (2009) 849–861. [45] M.J. Rybak, The pharmacokinetic and pharmacodynamics properties of vancomycin, Clin. Infect. Dis. 42 (2009) S35–S39. [46] M. Vallet-Regí, M. Colilla, B. González, Medical applications of organicinorganic hybrid materials within the field of silica-based bioceramics, Chem. Soc. Rev. 70 (2011) 596–607. [47] F.J. Martínez-Vázquez, M.V. Cabañas, J.L. Paris, D. Lozano, M. Vallet-Regí, Fabrication of novel Si-doped hydroxyapatite/gelatine scaffolds by rapid prototyping for drug delivery and bone regeneration, Acta Biomater. 15 (2015) 200–209. [48] R. Mihailescu, U. Furustrand Tafin, S. Corvec, A. Oliva, B. Betrisey, O. Borens, A. Trampuz, High activity of Fosfomycin and Rifampin against methicillinresistant Staphylococcus aureus biofilm in vitro and in an experimental foreign-body infection model, Antimicrob. Agents Chemother. 58 (2014) 2547–2553. [49] H.J. Tang, C.C. Chen, K.C. Cheng, K.Y. Wu, Y.C. Lin, C.C. Zhang, T.C. Weng, W.L. Yu, Y.H. Chiu, H.S. Toh, S.R. Chiang, B.A. Su, W.C. Ko, Y.C. Chuang, In vitro efficacies and resistance profiles of rifampin-based combination regimens for biofilm-embedded methicillin-resistant Staphylococcus aureus, Antimicrob. Agents Chemother. 57 (2013) 5717–5720. [50] C.J. Brinker, Y.F. Lu, A. Sellinger, H.Y. Fan, Evaporation-induced self-assembly: nanostructures made easy, Adv. Mater. 11 (1999) 579–585. [51] S. Sánchez-Salcedo, M. Vallet-Regí, M. Colilla, I. Izquierdo-Barba, Design and preparation of biocompatible zwitterionic hydroxyapatite, J. Mater. Chem. B 1 (2013) 1595–1606. [52] S. Sanchez-Salcedo, M. Vila, I. Izquierdo-Barba, M. Cicuendez, Marıa Vallet- Regi, Biopolymer-coated hydroxyapatite foams: a new antidote for heavy metal intoxication, J. Mater. Chem. 20 (2010) 6956–6961. [53] T. Kokubo, H. Kushitani, S. Sakka, T. Kitsugi, T. Yamamuro, Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic, J. Biomed. Mater. Res. 24 (1990) 721–734. [54] D. Molina-Manso, M. Manzano, J.C. Doadrio, G. del Prado, A. Ortiz-Pérez, M. Vallet-Regí, E. Gómez-Barrena, J. Esteban, Usefulness of SBA-15 mesoporous ceramics as a delivery system for vancomycin, rifampin and linezolid, Int. J. Antimicrob. Agents 40 (2012) 252–256. [55] I. Izquierdo-Barba, J.M. García-Martín, R. Álvarez, A. Palmero, J. Esteban, C. Pérez-Jorge, D. Arcos, M. Vallet-Regí, Nanocolumnar coatings with selective behavior towards osteoblast and Staphylococcus aureus proliferation, Acta Biomater. 15 (2015) 20–28. [56] A. Rodriguez, D. Monopoli, H. Alonso, I. Izquierdo-Barba, M. Vallet-Regí, Surfaces zwitterionization of customer 3D Ti6Al4V scaffolds promising alternative to eradicate bone infection, J. Mater. Chem. B 4 (2016) 4356–4365. [57] D. Lozano, C.G. Trejo, E. Gómez-Barrena, M. Manzano, J.C. Doadrio, A.J. Salinas, M. Vallet-Regí, N. García-Honduvilla, P. Esbrit, J. Buján, Osteostatin-loaded onto mesoporous ceramics improves the early phase of bone regeneration in a rabbit osteopenia model, Acta Biomater. 8 (2012) 2317–2323. [58] M. Vallet-Regí, M. Manzano, J.M. González-Calbet, E. Okunishid, Evidence of drugs confinement in silica mesoporous matrices by STEM CS corrected microscopy, Chem. Commun. 46 (2010) 2956–2958. [59] M. Vallet-Regí, F. Balas, D. Arcos, Mesoporous materials for drug delivery, Angew. Chem. Int. Ed. 46 (2007) 7548–7558. [60] A. Bauernfeind, Comparison of the antibacterial activities of the quinolones BAY 12-8039, gatifloxacin (AM 1155), trovafloxacin, clinafloxacin, levofloxacin levofloxacin and ciprofloxacin, J. Antimicrob. Chemother. 40 (1997) 639–651. [61] A. Soriano, F. Marco, J.A. Martínez, E. Pisos, M. Almela, V.P. Dimova, D. Alamo, M. Ortega, J. Lopez, J. Mensa, Influence of vancomycin minimum inhibitory concentration on the treatment of methicillin-resistant Staphylococcus aureus bacteremia, Clin. Infect. Dis. 46 (2008) 193–200. [62] J. Suo, C.-E. Chang, T.P. Lin, L.B. Heifets, Minimal inhibitory concentrations of isoniazid, rifampin, ethambutol, and streptomycin against Mycobacterium tuberculosis strains isolated before treatment of patients in Taiwan, Am. Rev. Respir. Dis. 138 (1988) 999–1001. [63] M. Colilla, M.L. Ruiz-González, M. Martínez-Carmona, J.M. González-Calbet, S. Sánchez-Salcedo, M. Vallet-Regí, A novel zwitterionic bioceramic with dual antibacterial capability, J. Mater. Chem. B 2 (2014) 5639–5650. [64] M. Ye, S. Kim, K. Park, Issues in long-term protein delivery using biodegradable microparticles, J. Controlled Release 146 (2010) 241–260. [65] L. Zeng, L. An, X. Wu, Modeling drug-carrier interaction in the drug release from nanocarriers, J. Drug Deliv. 150 (2011) 279–286. [66] R. Diez-Martínez, E. García-Fernandez, Mi. Manzano, A. Martínez, M. Domenech, M. Vallet-Regí, P. García, Auranofin-loaded nanoparticles as a new therapeutic tool to fight streptococcal infection, Sci. Rep. 6 (2016) 19525. [67] S.A.J. Zaat, C.A.N. Broekhuizen, M. Riool, Host tissue as a niche for
dspace.entity.typePublication
relation.isAuthorOfPublicationee9272a2-db11-4efb-97f8-7ce1a18ad55e
relation.isAuthorOfPublication791023b8-2531-44eb-ba01-56e3b7caa0cb
relation.isAuthorOfPublication.latestForDiscoveryee9272a2-db11-4efb-97f8-7ce1a18ad55e

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
01_201610_II_AB_3D scaffold with effective multidrug sequential release against bacteria biofilm(MANUSCRITO_ACEP).pdf
Size:
1.96 MB
Format:
Adobe Portable Document Format

Collections