Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

On ν-quasi-ordinary power series: factorization, Newton trees and resultants

dc.book.titleTopology of algebraic varieties and singularities
dc.contributor.authorArtal Bartolo, Enrique
dc.contributor.authorCassou-Noguès, Pierrette
dc.contributor.authorLuengo Velasco, Ignacio
dc.contributor.authorMelle Hernández, Alejandro
dc.contributor.editorCogolludo Agustín, José Ignacio
dc.contributor.editorHironaka, Eriko
dc.date.accessioned2023-06-20T05:45:13Z
dc.date.available2023-06-20T05:45:13Z
dc.date.issued2011
dc.descriptionPapers from the Conference on Topology of Algebraic Varieties, in honor of Anatoly Libgober's 60th birthday, held in Jaca, June 22–26, 2009
dc.description.abstractThe concept of ν-quasi-ordinary power series, which is a generalization of quasi-ordinary power series, was first introduced by H. Hironaka. In the paper under review, the authors study ν-quasi-ordinary power series and give a factorization theorem for ν-quasi-ordinary power series in the first part. The proof of the theorem uses Newton maps. In the second part of the paper, using the factorization theorem, they introduce the Newton tree to encode the Newton process for any hypersurface singularity defined by a power series germ as in Notation 1.1. Finally, the authors describe a condition for two ν-quasi-ordinary power series to have an "intersection multiplicity " by using Newton trees and they can also compute this generalized intersection multiplicity, resultants and discriminant.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMTM
dc.description.sponsorshipMTM
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/20877
dc.identifier.isbn978-0-8218-4890-6
dc.identifier.officialurlhttp://www.ams.org/bookstore?fn=20&arg1=conmseries&ikey=CONM-538
dc.identifier.relatedurlhttp://www.ams.org/home/page
dc.identifier.urihttps://hdl.handle.net/20.500.14352/45438
dc.issue.number538
dc.language.isoeng
dc.page.final343
dc.page.initial321
dc.page.total467
dc.publication.placeProvidence
dc.publisherAmerican Mathematical Society
dc.relation.ispartofseriesContemporary Mathematics
dc.relation.projectID2007-67908-C02-01
dc.relation.projectID2007-67908-C02-02
dc.rights.accessRightsrestricted access
dc.subject.cdu512.76/.77
dc.subject.keywordQuasi-ordinary power series
dc.subject.keywordresultant
dc.subject.keywordfactorisation
dc.subject.ucmGeometria algebraica
dc.subject.unesco1201.01 Geometría Algebraica
dc.titleOn ν-quasi-ordinary power series: factorization, Newton trees and resultants
dc.typebook part
dcterms.referencesS. Abhyankar, On the rami�cation of algebraic functions, Amer. J. Math. 77 (1955), 575-592. E. Artal, Pi. Cassou-Nogu�es, I. Luengo, and A. Melle Hern�andez, Quasi-ordinary power series and their zeta functions, Mem. Amer. Math. Soc. 178 (2005), no. 841, vi+85. E. Artal, Pi. Cassou-Nogu�es, I. Luengo, and A. Melle Hern�andez, Quasi-ordinary singularities and Newton trees, submitted, 2010. Pi. Cassou-Nogu�es, Algebraic curves, Book in preparation. D. Eisenbud and W.D. Neumann, Three-dimensional link theory and invariants of plane curve singularities, Annals of Mathematics Studies, vol. 110, Princeton University Press, Princeton, NJ, 1985. P. D. Gonz�alez-P�erez, Singularit�es quasi-ordinaires toriques et poly�edre de Newton du dis-criminant, Canad. J. Math. 52 (2000), no. 2, 348-368. P. D. Gonz�alez-P�erez, Toric embedded resolutions of quasi-ordinary hypersurface singularities, Ann. Inst. Fourier (Grenoble) 53 (2003), no. 6, 1819-1881. P. D. Gonz�alez-P�erez, L. J. McEwan, and A. N�emethi, The zeta-function of a quasi-ordinary singularity. II, Topics in algebraic and noncommutative geometry (Luminy/Annapolis, MD, 2001), Contemp. Math.,vol.324,Amer. Math. Soc., Providence, RI, 2003, pp. 109-122. J. Gwo�zdziewicz and A. P loski, On the Merle formula for polar invariants, Bull. Soc. Sci. Lett. L�od�z 41 (1991), no. 1-10, 61-67. H. Hironaka, Introduction to the theory of in�nitely near singular points, Consejo Superior de Investigaciones Cient���cas, Madrid, 1974, Memorias de Matematica del Instituto "Jorge Juan", No. 28. I. Luengo, A new proof of the Jung-Abhyankar theorem, J. Algebra 85 (1983), 399-409. A.N. Var�cenko, Zeta-function of monodromy and Newton's diagram, Invent. Math. 37 (1976), no. 3, 253-262.
dspace.entity.typePublication
relation.isAuthorOfPublication2e3a1e05-10b8-4ea5-9fcc-b53bbb0168ce
relation.isAuthorOfPublicationc5f952f6-669f-4e3d-abc8-76d6ac56119b
relation.isAuthorOfPublication.latestForDiscovery2e3a1e05-10b8-4ea5-9fcc-b53bbb0168ce

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
artal-melle-b.pdf
Size:
304.09 KB
Format:
Adobe Portable Document Format