A new matrix method for the Casimir operators of the Lie algebras wsp (N,R) and Isp (2N,R)
dc.contributor.author | Campoamor Stursberg, Otto-Rudwig | |
dc.date.accessioned | 2023-06-20T10:35:39Z | |
dc.date.available | 2023-06-20T10:35:39Z | |
dc.date.issued | 2005 | |
dc.description.abstract | A method is given to determine the Casimir operators of the perfect Lie algebras wsp (N,R) = sp (2N,R)−→⊕Γω1 ⊕Γ0hN and the inhomogeneous Lie algebrasIsp (2N,R) in terms of polynomials associated to a parametrized (2N + 1)×(2N + 1)-matrix. For the inhomogeneous symplectic algebras this matrix is shown to be associated to a faithful representation. The method is extended to other classes of Lie algebras, and some applications to the missing label problem are given. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/21775 | |
dc.identifier.doi | 10.1088/0305-4470/38/19/009 | |
dc.identifier.issn | 0305-4470 | |
dc.identifier.officialurl | https//doi.org/10.1088/0305-4470/38/19/009 | |
dc.identifier.relatedurl | http://iopscience.iop.org/0305-4470/38/19/009/pdf/0305-4470_38_19_009.pdf | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/50698 | |
dc.issue.number | 19 | |
dc.journal.title | Journal of physics A: Mathematical and general | |
dc.language.iso | eng | |
dc.page.final | 4208 | |
dc.page.initial | 4187 | |
dc.publisher | IOP Publishing | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 512 | |
dc.subject.ucm | Matemáticas (Matemáticas) | |
dc.subject.unesco | 12 Matemáticas | |
dc.title | A new matrix method for the Casimir operators of the Lie algebras wsp (N,R) and Isp (2N,R) | en |
dc.type | journal article | |
dc.volume.number | 38 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 72801982-9f3c-4db0-b765-6e7b4aa2221b | |
relation.isAuthorOfPublication.latestForDiscovery | 72801982-9f3c-4db0-b765-6e7b4aa2221b |
Download
Original bundle
1 - 1 of 1