Asymptotic behabior of grafting rays
dc.contributor.author | Díaz Sánchez, Raquel | |
dc.contributor.author | Inkang, Kim | |
dc.date.accessioned | 2023-06-20T00:13:01Z | |
dc.date.available | 2023-06-20T00:13:01Z | |
dc.date.issued | 2012 | |
dc.description.abstract | In this paper we study the convergence behavior of grafting rays to the Thurston boundary of Teichmuller space. When the grafting is done along a weighted system of simple closed curves or along a maximal uniquely ergodic lamination this behavior is the same as for Teichmuller geodesics and lines of minima. We also show that the ray grafted along a weighted system of simple closed curves is at bounded distance from Teichmuller geodesic. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | MCyT, DGI | |
dc.description.sponsorship | NRF | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/15717 | |
dc.identifier.doi | 10.1007/s10711-011-9632-x | |
dc.identifier.issn | 1572-9168 | |
dc.identifier.officialurl | http://www.springerlink.com/content/k305h1856v7g3128/fulltext.pdf | |
dc.identifier.relatedurl | http://www.springerlink.com/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/42214 | |
dc.issue.number | 1 | |
dc.journal.title | Geometriae dedicata | |
dc.language.iso | eng | |
dc.page.final | 281 | |
dc.page.initial | 267 | |
dc.publisher | Springer | |
dc.relation.projectID | BFM2003-03971 | |
dc.relation.projectID | MTM2006-14688 | |
dc.relation.projectID | R01-2008-000-10052-0 | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 514 | |
dc.subject.keyword | Projective structure | |
dc.subject.keyword | Hyperbolic structure | |
dc.subject.keyword | Grafting | |
dc.subject.keyword | Teichmüller space | |
dc.subject.ucm | Geometría | |
dc.subject.unesco | 1204 Geometría | |
dc.title | Asymptotic behabior of grafting rays | |
dc.type | journal article | |
dc.volume.number | 158 | |
dcterms.references | Abikoff, W.: The Real Analytic Theory of Teichmüller Space. Springer, Berlin (1980) Choi, Y., Rafi, K.: Comparison between Teichmüller and Lipschitz metrics. J. Lond. Math. Soc. 76, 739–756 (2007) Choi, Y., Rafi, K., Series, C.: Lines of minima and Teichmüller geodesics. GAFA 18(3), 698–754 (2008) Díaz, R., Series, C.: Limit points of lines of minima in Thurston’s boundary of Teichmüller space. Alg. Geom. Top. 3, 207–234 (2003) Dumas, D.: Grafting, pruning, and the antipodalmap on measured laminations. J. Diff. Geom. 74, 93–118 (2006) Dumas, D., Wolf, M.: Projective structures, grafting, and measured laminations. Geom. Top. 12(1),351–386 (2008) Gardiner, F.: Teichmüller Theory and Quadratic Differentials. Wiley, London (1987) Hensel, S.: Iterated grafting and holonomy lifts of Teichmüller space. Geometr. Ded. (2011) Hubbard, J., Masur, H.: Quadratic differentials and foliations. Acta Math. 142, 221–274 (1979) Kamishima, Y., Tan, S.: Deformation spaces on geometric structures. In: Aspects of low-dimensional manifolds, vol. 20 of Advanced Studies in Pure Mathematics, Kinokuniya, Tokyo, pp 263–299 (1992) Kerckhoff, S.: The asymptotic geometry of Teichmüller space. Topology 19, 23–41 (1980) Kerckhoff, S.: Lines of minima in Teichmüller space. Duke Math. J. 65, 187–213 (1992) Lenzhen, A.: Teichmüller geodesics which do not converge. Geom. Top. 12, 177–197 (2008) Masur, H.: On a class of geodesics in Teichmüller space. Ann. Math. 102(2), 205–221 (1975) Masur, H.: Two boundaries of Teichmüller space. Duke Math. J. 49, 183–190 (1982) McMullen, C.T.: Complex earthquakes and Teichmüller theory. J. Am. Math. Soc. 11(2), 283–320 (1998) Minsky, Y.N.: Extremal length estimates and product regions in Teichmüller space. Duke Math. J. 83(2), 249–286 (1996) Scannell, K., Wolf, M.: The grafting map of Teichmüller space. J. AMS 15(4), 893–927 (2002) Tanigawa, H.: Grafting, harmonic maps and projective structures on surfaces. J. Diff. Geom. 47, 399–419 (1997) Wolpert, S.: The length spectra as moduli for compact Riemann surfaces. Ann. Math. 109(2), 323–351 (1979) | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | ad6ca69d-67a0-4e6d-9177-6a5439e93ce3 | |
relation.isAuthorOfPublication.latestForDiscovery | ad6ca69d-67a0-4e6d-9177-6a5439e93ce3 |
Download
Original bundle
1 - 1 of 1