Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Fabrication of novel Si-doped hydroxyapatitefgelatine scaffolds by rapid prototyping for drug delivery and bone regeneration

dc.contributor.authorMartínez-Vázquez, F.J.
dc.contributor.authorCabañas Criado, María Victoria
dc.contributor.authorParis, J.L.
dc.contributor.authorLozano, D.
dc.contributor.authorVallet Regí, María Dulce Nombre
dc.date.accessioned2023-06-19T14:54:42Z
dc.date.available2023-06-19T14:54:42Z
dc.date.issued2015
dc.description.abstractPorous 3-D scaffolds consisting of gelatine and Si-doped hydroxyapatite were fabricated at room temperature by rapid prototyping. Microscopic characterization revealed a highly homogeneous structure, showing the pre-designed porosity (macroporosity) and a lesser in-rod porosity (microporosity). The mechanical properties of such scaffolds are close to those of trabecular bone of the same density. The biological behavior of these hybrid scaffolds is greater than that of pure ceramic scaffolds without gelatine, increasing pre-osteoblastic MC3T3-E1 cell differentiation (matrix mineralization and gene expression). Since the fabrication process of these structures was carried out at mild conditions, an antibiotic (vancomycin) was incorporated in the slurry before the extrusion of the structures. The release profile of this antibiotic was measured in phosphate-buffered saline solution by high-performance liquid chromatography and was adjusted to a first-order release kinetics. Vancomycin released from the material was also shown to inhibit bacterial growth in vitro. The implications of these results for bone tissue engineering applications are discussed
dc.description.departmentDepto. de Química en Ciencias Farmacéuticas
dc.description.facultyFac. de Farmacia
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía y Competitividad
dc.description.sponsorshipAgeing Network of Excellence
dc.description.statusinpress
dc.eprint.idhttps://eprints.ucm.es/id/eprint/30908
dc.identifier.doi10.1016/j.actbio.2014.12.021
dc.identifier.issn1742-7061
dc.identifier.officialurlhttp://dx.doi.org/10.1016/j.actbio.2014.12.021
dc.identifier.urihttps://hdl.handle.net/20.500.14352/34730
dc.journal.titleActa Biomaterialia
dc.language.isoeng
dc.publisherElsevier
dc.relation.projectIDMAT2012-35556
dc.relation.projectIDCS0201-11384-E
dc.rights.accessRightsopen access
dc.subject.cdu547
dc.subject.keywordImpresión tridimensional
dc.subject.keywordThree-dimensional printing
dc.subject.keywordHierarchical porosity
dc.subject.keywordComposite scaffolds
dc.subject.keywordVancomycin
dc.subject.keywordTissue engineering
dc.subject.ucmQuímica orgánica (Química)
dc.subject.unesco2306 Química Orgánica
dc.titleFabrication of novel Si-doped hydroxyapatitefgelatine scaffolds by rapid prototyping for drug delivery and bone regeneration
dc.typejournal article
dspace.entity.typePublication
relation.isAuthorOfPublication516b56e5-68ed-4717-a469-b4380f555994
relation.isAuthorOfPublication791023b8-2531-44eb-ba01-56e3b7caa0cb
relation.isAuthorOfPublication.latestForDiscovery791023b8-2531-44eb-ba01-56e3b7caa0cb

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
628 Acta Biomaterialia 15 200-209.pdf
Size:
18.76 MB
Format:
Adobe Portable Document Format

Collections