Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Automatic Burst Detection in Solar Radio Spectrograms Using Deep Learning: deARCE Method

dc.contributor.authorBussons Gordo, Javier
dc.contributor.authorFernández Ruiz, Mario
dc.contributor.authorPrieto Mateo, Manuel
dc.contributor.authorAlvarado Díaz, Jorge
dc.contributor.authorChávez de la O, Francisco
dc.contributor.authorMonstein, Christian
dc.contributor.authorHidalgo Pérez, José Ignacio
dc.date.accessioned2025-01-30T14:51:11Z
dc.date.available2025-01-30T14:51:11Z
dc.date.issued2023-06
dc.description.abstractWe present in detail an automatic radio-burst detection system, based on the AlexNet convolutional neural network, for use with any kind of solar spectrogram. A full methodology for model training, performance evaluation, and feedback to the model generator has been developed with special emphasis on i) robustness tests against stochastic and overfitting effects, ii) specific metrics adapted to the unbalanced nature of the solar-burst scenario, iii) tunable parameters for probability-threshold optimization, and iv) burst-coincidence cross match among e-Callisto stations and with external observatories (NOAA-SWPC). The resulting neural network configuration has been designed to accept data from observatories other than e-Callisto, either ground- or spacecraft-based. Typical False Negative and False Positive Scores in single-observatory mode are, respectively, in the 10 – 16% and 6 – 8% ranges, which improve further in cross-match mode. This mode includes new services (deARCE, Xmatch) allowing the end-user to check at a glance if a solar radio burst has taken place with a high level of confidence.
dc.description.departmentDepto. de Arquitectura de Computadores y Automática
dc.description.facultyFac. de Informática
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.doi10.1007/s11207-023-02171-0
dc.identifier.issn0038-0938
dc.identifier.issn1573-093X
dc.identifier.officialurlhttps://link.springer.com/article/10.1007/s11207-023-02171-0
dc.identifier.urihttps://hdl.handle.net/20.500.14352/117342
dc.issue.number82
dc.journal.titleSolar Physics
dc.language.isoeng
dc.page.final24
dc.page.initial1
dc.publisherSpringer Nature
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.keyworde-Callisto
dc.subject.keywordSolar radio burst
dc.subject.keywordSpectrogram
dc.subject.keywordDeep learning
dc.subject.ucmFísica (Física)
dc.subject.unesco22 Física
dc.titleAutomatic Burst Detection in Solar Radio Spectrograms Using Deep Learning: deARCE Method
dc.typejournal article
dc.type.hasVersionAM
dc.volume.number298
dspace.entity.typePublication
relation.isAuthorOfPublication981f825f-2880-449a-bcfc-686b866206d0
relation.isAuthorOfPublication.latestForDiscovery981f825f-2880-449a-bcfc-686b866206d0

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Automatic_Burst_Detection.pdf
Size:
4.48 MB
Format:
Adobe Portable Document Format

Collections