A novel wavelength dispersive device with a dispersive element based on staircase-like straight and parallel arrayed waveguides

dc.contributor.authorMartínez Matos, Óscar
dc.contributor.authorCalvo Padilla, María Luisa
dc.contributor.authorCheben, Pavel
dc.contributor.authorRodrigo Martín-Romo, José Augusto
dc.contributor.authorJanz, Siegfried
dc.contributor.authorXu, Dan-Xia
dc.contributor.authorDelâge, André
dc.date.accessioned2023-06-20T10:41:53Z
dc.date.available2023-06-20T10:41:53Z
dc.date.issued2007-02-01
dc.description© 2006 Elsevier B.V. The financial supports from the Spanish Ministry of Science and Technology under Project TIC2002-1846 and from the National Research Council of Canada are acknowledged. Partial results were presented at the V Ibero-American Optics Meeting (RIAO) and VIII OPTILAS, October 2–8, 2004, Porlamar (Venezuela).
dc.description.abstractWe propose a new type of arrayed waveguide grating (AWG) multiplexer/demultiplexer based on modified group refractive index. This device is composed by an array of straight and parallel waveguides of equal length and each waveguide consist of two sections with different width. The length of the two sections are changed from a waveguide to the adjacent one following a linear dependence resulting in a wavelength dispersive waveguide array. An example of the device design for silicon-on-insulator (Sol) platform is provided and numerical simulations have been carried out for various arrayed waveguide parameters. We demonstrate that the group index modification can be used for tailoring device dispersion properties, and that it can also result in new dispersion characteristics predicted numerically not observed in conventional AWGs. Additional advantages are that the demultiplexer does not necessarily require bending waveguide sections as in a conventional AWG (de)multiplexers, and thus yields highly compact devices with potentially very low insertion loss. Channel spacing of I nm have been predicted for sub-micron waveguides sizes. In this paper it is also proposed a novel wavefront converter based on waveguide array lens-like element with waveguides broadened sections. Numerical results for different input/output geometries are analized.
dc.description.departmentDepto. de Óptica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia y Tecnología, España
dc.description.sponsorshipNational Research Council of Canada
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/25202
dc.identifier.doi10.1016/j.optcom.2006.08.035
dc.identifier.issn0030-4018
dc.identifier.officialurlhttp://dx.doi.org/10.1016/j.optcom.2006.08.035
dc.identifier.relatedurlhttp://www.sciencedirect.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/51021
dc.issue.number1
dc.journal.titleOptics Communications
dc.language.isoeng
dc.page.final40
dc.page.initial31
dc.publisherElsevier Science BV
dc.relation.projectIDTIC2002-1846
dc.rights.accessRightsopen access
dc.subject.cdu535
dc.subject.keywordCylindrical Phase
dc.subject.keywordFront Conversion
dc.subject.keywordGaussian-Beam
dc.subject.keywordPlane-Wave
dc.subject.keywordSilicon
dc.subject.keywordBirefringence
dc.subject.keywordCompensation
dc.subject.keywordFabrication
dc.subject.keywordManagement
dc.subject.keywordGratings
dc.subject.ucmÓptica (Física)
dc.subject.unesco2209.19 Óptica Física
dc.titleA novel wavelength dispersive device with a dispersive element based on staircase-like straight and parallel arrayed waveguides
dc.typejournal article
dc.volume.number270
dcterms.references[1] John Y. Wei, IEEE J. Sel. Areas Commun. 20 (4) (2002) 768. [2] Jing Zhang, Biswanath Mukherjee, IEEE Network (2004) 41. [3] M.K. Smith, C. Van Dam, IEEE J. Sel. Top. Quantum Elect. 2 (2) (1996) 236. [4] S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, A. Delâge, K. Dossou, L. Erickson, M. Gao, P. Krug, B. Lamontagne, M. Packirisamy, M. Pearson, D.-X. Xu, Technol. Lett. 16 (2004) 503. [5] S. Janz, M. Pearson, B. Lamontagne, L. Erickson, A. Delâge, P. Cheben, D-X. Xu, M. Gao, A. Balakrishnan, J. Miller, S. Charbonneau, in: OSA Trends in Optics and Photonics, vol. 70, 2002, p. 69 (Optical Fiber Communication Conference, OSA Technical Digest, 2002). [6] R.R. Whiteman, A.P. Knights, D. George, I.E. Day, A. Vonsovici, A.A. House, G.F. Hopper, M. Asghari, in: Optoelectronic Integration on SiliconProc.SPIE, vol. 4997, 2003, p. 146, Photonocs West, San Jose. [7] L. Pavesi, D.J. Lockwood, Silicon Photonics, Springer-Verlag, New York, 2004. [8] G.T. Reed, A.P. Knights, Silicon Photonics – An Introduction, Wiley, 2004. [9] P. Cheben, D-X Xu, S. Janz, A. Delâge, Proc. SPIE 5117 (2003) 147 (VLSI Circuits and Systems; José F. López, Juan A. Montiel-Nelson, Dimitris Pavlidis (Eds.), 2003). [10] M.R.T. Pearson, A. Bezinger, A. Delâge, J.W. Fraser, S. Janz, P.E. Jessop, D.–X. Xu, SPIE Proc. 3953 (2000) 11. [11] S. Janz, in: Silicon Photonics, Springer-Verlag, Berlin, 2004 (Chapter 10). [12] P. Cheben, in: M.L. Calvo, V. Lakshminarayanan (Eds.), Optical Waveguides: From Theory to Applied Technologies, Taylor & Francis Ltd., 2006 (Chapter 5). [13] P.D. Trinh, S. Yegnanarayanan, F. Coppinger, B. Jalali, IEEE Photon. Technol. Lett. 9 (1997) 940. [14] P. Cheben, A. Delâge, L. Eirckson, S. Janz, D.-X. Xu, SPIE Proc. 4293 (2001) 15. [15] P. Cheben, D.-X. Xu, S. Janz, A. Delâge, D. Dalacu, in: D.J. Robbins, G.E. Jabbour (Eds.), Optoelectronic Integration on Silicon, SPIE Proc, vol. 4997, 2003, p. 181. [16] K. Sasaki, F. Ohno, A. Motegi, T. Baba, Electron. Lett. 41 (2005) 801. [17] P. Cheben, I. Powell, S. Janz, D.-X. Xu, Opt. Lett. 30 (2005) 1824. [18] D.-X. Xu, P. Cheben, B. Lamontagne, S. Janz, W.N. Ye, in: 12th International Symposium on SOI Technology and Devices, ECS Proc. 2005-03, 2005, p. 207. [19] O. Martinez Matos, M.L. Calvo Padilla, P. Cheben, S. Janz, J.A. Rodrigo Martín-Romo, D.-X. Xu, A. Delâge, J. Lightwave Technol. 24 (3) (2006) 1551. [20] K.K. Lee, D.R. Lim, L.C. Kimerling, J. Shin, F. Cerrina, Opt. Lett. 26 (2001) 1888. [21] P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J.V. Campenhout, D. Tailaert, B. Luyssaert, P. Bienstman, D.V. Thourhout, R. Baets, IEEE Photon. Lett. 16 (5) (2004) 1328. [22] T. Chu, H. Yamada, S. Ishida, Y. Arakawa, Opt. Exp. 13 (25) (2005) 10109. [23] Y. Kawakita, T. Saitoh, S. Shimotaya, K. Shimomura, IEEE Photon. Technol. Lett. 16 (1) (2004) 144. [24] O. Martínez Matos, M.L. Calvo, P. Cheben, A. Delâge, S. Janz, D.-X. Xu, SPIE Proc. 5622 (2004) 885 [5th Iberoamerican Meeting on Optics and 8th Latin American Meeting on Optics, Lasers, and Their Applications, Venezuela, 2004]. [25] W. Snyder, J.D. Love, Optical Waveguide Theory, Chapman and Hall, London, 1983 (Chapter 11). [26] R.A. Soref, J. Schnidtchen, K. Petermann, IEEE J. Quantum Electron. 27 (1991) 1971. [27] T. Erdogan, J. Lightwave Technol. 15 (8) (1997) 1277. [28] C.R. Giles, J. Lightwave Technol. 15 (8) (1997) 1391. [29] P. Cheben, A. Bogdanov, A. Delâge, S. Janz, B. Lamontagne, M.J. Picard, E. Post, D.-X. Xu, SPIE 5644 (2004) 103. [30] H.A. Rowland, Phil. Magazine 13 (1882) 469–474. Reprinted in H.A. Rowland, The Physical Papers of Henri August Rowland, The John Hopkins University press, Baltimore, 1902, p. 487. [31] M. Born, E. Wolf, Principles of Optics, Pergamon press, 1975 (Chapter 7). [32] D.-X. Xu, P. Cheben, D. Dalacu, A. Delâge, S. Janz, B. Lamontagne, M.J. Picard, W.N. Ye, Opt. Lett. 29 (2004) 2384. [33] W.N. Ye, D.-X. Xu, S. Janz, P. Cheben, M.-J. Picard, B. Lamontagne, N.G. Tarr, J. Lightwave Technol. 23 (2005) 1308. [34] D.-X. Xu, J.-M. Baribeau, P. Cheben, D. Dalacu, A. Delâge, B. Lamontagne, S. Janz, M.-J. Picard, W.N. Ye, Electrochem. Soc. Proc. 2004–07 (2004) 619. [35] D.-X. Xu, S. Janz, P. Cheben, M.-J. Picard, B. Lamontagne, N.G. Tarr, W.N. Ye, in: Proceedings LEOS IEEE Annual Meeting, vol. 2, 2003, p. 590. [36] M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, I. Yokohama, Phys. Rev. Lett. 87 (25) (2001) 253902-1. [37] D.-X. Xu, P. Cheben, D. Dalacu, A. Delâge, S. Janz, B. Lamontagne, M.-J. Picard, W.N. Ye, Opt. Lett. 29 (2004) 2384. [38] P. Cheben, M.L. Calvo, J. Opt. Soc. Am. 13A (1) (1996) 131. [39] M.L. Calvo, L. De Pedraza, J. Mod. Opt. (UK) 43 (6) (1996) 1261. [40] P. Cheben, M.L. Calvo, JOSA A 10 (12) (1993) 2573. [41] R. Adar, C.H. Henry, C. Dragone, R.C. Kistler, M.A. Mildbrodt, J. Lightwave Technol. 11 (2) (1993) 212.
dspace.entity.typePublication
relation.isAuthorOfPublicationb6643c3d-f635-48d3-a642-922a4b2e595c
relation.isAuthorOfPublicatione2846481-608d-43dd-a835-d70f73a4dd48
relation.isAuthorOfPublication.latestForDiscoveryb6643c3d-f635-48d3-a642-922a4b2e595c

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Martinez-Matos17.pdf
Size:
500.67 KB
Format:
Adobe Portable Document Format

Collections