Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Análisis de Técnicas de Detección de Imágenes Sintéticas

dc.contributor.advisorGarcía Villalba, Luis Javier
dc.contributor.advisorSandoval Orozco, Ana Lucila
dc.contributor.authorCabañas González, Daniel
dc.date.accessioned2024-09-04T15:28:29Z
dc.date.available2024-09-04T15:28:29Z
dc.date.issued2024
dc.descriptionThis research addresses the study and analysis of the current state of detectors for synthetic images generated by diffusion models. Through a methodology that includes the study of previous generative models and the application of advanced detection techniques such as binary classifiers and frequency spectrum analysis, this work explores the efficacy of current methods and their applicability to diffusion models. The results reveal that, although the classifiers are effective within the datasets with which they were trained, they face significant limitations in generalizing to new models, highlighting the need for more robust and generalizable tools. The conclusions emphasize the urgency of continuing research in this field, given the serious implications of deepfakes and unregulated synthetic content. This study not only validates the possibility of adapting existing techniques to new generative models but also provides a starting point for the development of practical solutions in the fight against cybercrime, specifically in the detection and prevention of illegal and harmful content. The tools developed from this research could be essential for security forces and other entities dedicated to combating the pernicious effects of deepfake technology.
dc.description.abstractThis research addresses the study and analysis of the current state of detectors for synthetic images generated by diffusion models. Through a methodology that includes the study of previous generative models and the application of advanced detection techniques such as binary classifiers and frequency spectrum analysis, this work explores the efficacy of current methods and their applicability to diffusion models. The results reveal that, although the classifiers are effective within the datasets with which they were trained, they face significant limitations in generalizing to new models, highlighting the need for more robust and generalizable tools. The conclusions emphasize the urgency of continuing research in this field, given the serious implications of deepfakes and unregulated synthetic content. This study not only validates the possibility of adapting existing techniques to new generative models but also provides a starting point for the development of practical solutions in the fight against cybercrime, specifically in the detection and prevention of illegal and harmful content. The tools developed from this research could be essential for security forces and other entities dedicated to combating the pernicious effects of deepfake technology.
dc.description.departmentDepto. de Ingeniería de Software e Inteligencia Artificial (ISIA)
dc.description.facultyFac. de Informática
dc.description.refereedTRUE
dc.description.statusunpub
dc.identifier.urihttps://hdl.handle.net/20.500.14352/107921
dc.language.isospa
dc.master.titleMáster en Ingeniería Informática
dc.page.total86
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.cdu004(043.3)
dc.subject.keywordIA
dc.subject.keywordConjuntos de datos
dc.subject.keywordDeepfakes
dc.subject.keywordModelos de difusión
dc.subject.keywordGANs
dc.subject.keywordDetección de imágenes sintéticas.
dc.subject.keywordDatasets
dc.subject.keywordDiffusion models
dc.subject.keywordSynthetic images detection
dc.subject.ucmInformática (Informática)
dc.subject.unesco33 Ciencias Tecnológicas
dc.titleAnálisis de Técnicas de Detección de Imágenes Sintéticas
dc.title.alternativeAnalysis of Synthetic Image Detection Techniques
dc.typemaster thesis
dc.type.hasVersionAM
dspace.entity.typePublication
relation.isAdvisorOfPublication0f67f6b3-4d2f-4545-90e1-95b8d9f3e1f0
relation.isAdvisorOfPublicationdea44425-99a5-4fef-b005-52d0713d0e0d
relation.isAdvisorOfPublication.latestForDiscovery0f67f6b3-4d2f-4545-90e1-95b8d9f3e1f0

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
TFM - Daniel Cabañas (2).pdf
Size:
20.87 MB
Format:
Adobe Portable Document Format