Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Links and analytic invariants of superisolated singularities

Loading...
Thumbnail Image

Full text at PDC

Publication date

2005

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

American Mathematical Society
Citations
Google Scholar

Citation

Abstract

Using superisolated singularities we present examples and counterexamples to some of the most important conjectures regarding invariants of normal surface singularities. More precisely, we show that the ``Seiberg-Witten invariant conjecture''(of Nicolaescu and the third author), the ``Universal abelian cover conjecture'' (of Neumann and Wahl) and the ``Geometric genus conjecture'' fail (at least at that generality in which they were formulated). Moreover, we also show that for Gorenstein singularities (even with integral homology sphere links) besides the geometric genus, the embedded dimension and the multiplicity (in particular, the Hilbert-Samuel function) also fail to be topological; and in general, the Artin cycle does not coincide with the maximal (ideal) cycle.

Research Projects

Organizational Units

Journal Issue

Description

Received March 29, 2004 and, in revised form, June 19, 2004. The first two authors are partially supported by BFM2001-1488-C02-01. The third author is partially supported by NSF grant DMS-0304759.

Keywords

Collections