Detection and measurement of waviness on thin metallic wires

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
The Optical Society Of America
Google Scholar
Research Projects
Organizational Units
Journal Issue
We propose a model for determining the far-field diffraction pattern of wires with waviness. Analytical solutions are obtained by means of the stationary phase method, which allows us to determine dimensional parameters such as wire diameter and waviness factor. Experimental results are presented, which are in accordance with our theoretical description.
© 2004 Optical Society of America. We thank Jose Alonso-Fernández and Klaus Jakobs for their valuable suggestions and interest in this study. This project was partially supported by the European Commission project SMT4-CT97-2184 Detection of Defects on Cylindrical Surfaces and by the Ministerio de Ciencia y Tecnología of Spain (contract DPI2001-1238). C. Tejeda was supported by a Marie Curie Research Training Grant (contract SMT4-CT98-9028). Part of this research was carried out at KJM Gesellschaft fü r Optoelektronische Messtechnik mbH (Germany).
1. E. Bernabéu, L. M. Sánchez-Brea, P. Siegmann, J. A. Gómez-Pedrero, G. Wilkening, L. Koenders, F. Müller, M. Hildebrand, H. Hermann, “Classification of surface structures on fine and ultra fine wires”, Appl. Surf. Sci. 180, 191–199 (2001). 2. L. M. Sánchez-Brea, P. Siegmann, M. A. Rebollo, E. Bernabéu, “Optical technique for the automatic detection and measurement of surface defects on thin metallic wires”, Appl. Opt. 39, 539–545 (2000). 3. L. M. Sánchez-Brea, P. Siegmann, E. Bernabéu, M. A. Rebollo, F. Pérez-Quintián, C. A. Raffo, “Detection of surface defects on thin metallic wires by geometrical conical refraction”, Wire J. Int. 33, 124–127 (2000). 4. J. C. Martínez-Antón, P. Siegmann, L. M. Sánchez Brea, E. Bernabéu, “In-line detection and evaluation of surface defects on thin metallic wires”, in Optical Measurement Systems for Industrial Inspection II: Applications in Production Engineering, R. Hoefling, W. P. Jueptner, eds., Proc. SPIE4399, 27–31 (2001). 5. R. Berlasso, F. Perez-Quintián, M. Rebollo, N. Gaggioli, L. M. Sánchez-Brea, E. Bernabéu, “Speckle size of light scattered from slightly rough cylindrical surfaces”, Appl. Opt. 41, 2020–2027 (2002). [PubMed] 6. E. Bernabéu, L. M. Sánchez-Brea, P. Siegmann, J. A. Gómez-Pedrero, G. Wilkening, L. Koenders, F. Müller, M. Hildebrand, H. Hermann, Surface Structures on Fine and Ultra Fine Wires (Editorial Complutense, Madrid, 2002). 7. D. Lebrun, S. Belaid, C. Ozkul, K. F. Ren, G. Grehan, “Enhancement of wire diameter measurements: comparison between Fraunhofer diffraction and Lorenz-Mie theory”, Opt. Eng. 35, 946–950 (1996). 8. E. Bernabéu, I. Serroukh, L. M. Sánchez-Brea, “Geometrical model for wire optical diffraction selected by experimental statistical analysis”, Opt. Eng. 38, 1319–1325 (1999). 9. J. C. Martínez-Antón, I. Serroukh, E. Bernabéu, “On Babinet’s principle and a diffraction-interferometric technique to determine the diameter of cylindrical wires”, Metrologia 38, 125–134 (2001). 10. S. L. Prosvirnin, S. A. Tretyakov, P. L. Mladyonov, “Electromagnetic wave diffraction by planar periodic gratings of wavy metal strips”, J. Electromagn. Waves Appl. 16, 421–435 (2002). 11. E. Kreyszig, Differential Geometry (Dover, New York, 1991), pp. 24–25. 12. J. J. Stamnes, Waves in Focal Regions (Adam Hilger, Bristol, 1986).