Stress and field contactless sensor based on the scattering of electromagnetic waves by a single ferromagnetic microwire

dc.contributor.authorHerrero Gómez, Carlos
dc.contributor.authorAragón Sánchez, Ana María
dc.contributor.authorHernando Rydings, Manuel
dc.contributor.authorMarín Palacios, María Pilar
dc.date.accessioned2023-06-19T13:32:44Z
dc.date.available2023-06-19T13:32:44Z
dc.date.issued2014-09-01
dc.description© 2014 AIP Publishing LLC. The authors want to acknowledge the Spanish Ministry of Economy and Competitiveness for it support via the projects TSI-020100-2011-280, Consolider-Ingenio 2010 CSD2007-0010, MAT2009-14741-C02-01, and IPT-2011- 0893-420000. We also want to thank Micromag 2000, S.L., which provided the microwire samples.
dc.description.abstractIn this paper, we report an experimental study on the microwave modulated scattering intensity for a single Fe_2.25Co_72.75Si_10B_15 amorphous metallic microwire. The modulation is driven by applying a bias magnetic field that tunes the magnetic permeability of the ferromagnetic microwire. Furthermore, by using a magnetostrictive microwire, we also demonstrate that the microwave scattering is sensitive to mechanical stresses. In fact, we present a wireless microwave controlled stress sensor, suitable for biological applications, as a possible use of this effect. In addition, a first order theoretical approximation accounts for the observed influence of the magnetic permeability on the scattering coefficients. That model leads to predictions in good agreement with the experimental results.
dc.description.departmentDepto. de Física de Materiales
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO), España
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/29558
dc.identifier.doi10.1063/1.4894732
dc.identifier.issn0003-6951
dc.identifier.officialurlhttp://dx.doi.org/10.1063/1.4894732
dc.identifier.relatedurlhttp://scitation.aip.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/33983
dc.issue.number9
dc.journal.titleApplied physics letters
dc.language.isoeng
dc.page.final092405/4
dc.page.initial092405/1
dc.publisherAmerican Institute of Physics
dc.relation.projectIDTSI-020100-2011-280
dc.relation.projectIDCSD2007-0010
dc.relation.projectIDMAT2009-14741-C02-01
dc.relation.projectIDIPT-2011- 0893-420000
dc.rights.accessRightsopen access
dc.subject.cdu538.9
dc.subject.keywordContactless sensors
dc.subject.keywordFerromagnetic microwires
dc.subject.keywordScattering of electromagnetic waves
dc.subject.ucmFísica de materiales
dc.titleStress and field contactless sensor based on the scattering of electromagnetic waves by a single ferromagnetic microwire
dc.typejournal article
dc.volume.number105
dcterms.references1 A. M. Hawkes, A. R. Katko, and S. A. Cummer, Appl. Phys. Lett. 103, 163901 (2013). 2 S. Yang, K. Lozano, A. Lomeli, H. D. Foltz, and R. Jones, Composites Part A 36, 691 (2005). 3 K. Vijayakumar, S. R. Wylie, J. D. Cullen, C. C. Wright, and A. I. Ai- Shamma’a, J. Phys. Conf. Ser. 178, 012033 (2009). 4 B. Yuan, L. Yu, L. Sheng, K. An, and X. Zhao, J. Phys. D: Appl. Phys. 45, 235108 (2012). 5 M. Vázquez and A. Hernándo, J. Phys. D: Appl. Phys. 29, 939 (1996). 6 M. Knobel, M. L. Sánchez, C. Gómez-Polo, P. Marín, M. Vázquez, and A. Hernándo, J. Appl. Phys. 79, 1646 (1996). 7 M. Vázquez, A. Zhukov, P. Aragoneses, J. Arcas, J. M. García-Beneytez, P. Marín, and A. Hernándo, IEEE Trans. Magn. 34, 724 (1998). 8 H. Chiriac, M. Tibu, V. Dobrea, and I. Murgulescu, J. Optoelectron. Adv. Mater. 6, 647 (2004). 9 S. E. Lofland, S. M. Bhagat, M. Domínguez, J. M. García-Beneytez, F. Guerrero, and M. Vázquez, J. Appl. Phys. 85, 4442 (1999). 10 S. I. Sandacci, D. P. Makhnovskiy, L. V. Panina, and V. Larin, IEEE Trans. Magn. 41, 3553 (2005). 11 S. I. Sandacci, D. P. Makhnovskiy, and L. V. Panina, J. Magn. Magn. Mater. 272, 1855 (2004). 12 L. V. Panina, S. I. Sandacci, and D. P. Makhnovskiy, J. Appl. Phys. 97, 013701 (2005). 13 M. Vázquez and D. X. Chen, IEEE Trans. Magn. 31, 1229 (1995). 14 D. X. Chen, J. L. Muñoz, A. Hernándo, and M. Vázquez, Phys. Rev. B 57(17), 10699 (1998). 15 L. Kraus, G. Infante, Z. Frait, and M. Vázquez, Phys. Rev. B 83, 174438 (2011). 16 P. Marín, D. Cortina, and A. Hernándo, J. Magn. Magn. Mater. 290, 1597 (2005). 17 G. V. Kurlyandskaya, M. L. Sánchez, B. Hernándo, V. M. Prida, P. Gorria, and M. Tejedor, Appl. Phys. Lett. 82, 3053 (2003). 18 P. Marín, M. Marcos, and A. Hernándo, Appl. Phys. Lett. 96, 262512 (2010). 19 C. Herrero-Gómez, P. Marín, and A. Hernándo, Appl. Phys. Lett. 103, 142414 (2013). 20 H. X. Peng, D. X. Qin, M. H. Phan, J. Tang, L. V. Panina, M. Ipatov, V. Zhukova, A. Zhukov, and J. Gonzalez, J. Non-Cryst. Solids 355, 1380 (2009). 21 L. V. Panina, M. Ipatov, V. Zhukova, A. Zhukov, and J. González, J. Appl. Phys. 109, 053901 (2011). 22 D. P. Makhnovskiy, L. V. Panina, C. García, A. Zhukov, and J. González, Phys. Rev. B 74, 064205 (2006). 23 Y. Luo, H. X. Peng, F. X. Qin, M. Ipatov, V. Zhukova, A. Zhukov, and J. González, Appl. Phys. Lett. 103, 251902 (2013). 24 M. Flores, A. Calo, A. Gorriti, D. Cortina, G. Rubio, J. Grajal, and A. Hernándo, J. Electromagn, Waves Appl. 28, 202 (2014). 25 A. Hernándo, M. Vázquez, and J. M. Barandiarán, J. Phys E 21(12), 1129 (1988). 26 J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, New York, 1998).
dspace.entity.typePublication
relation.isAuthorOfPublication7fdc4e1c-351d-4061-9ee4-3369d55a3feb
relation.isAuthorOfPublication.latestForDiscovery7fdc4e1c-351d-4061-9ee4-3369d55a3feb

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1813.pdf
Size:
899.1 KB
Format:
Adobe Portable Document Format

Collections