Climatology and characteristics of stratospheric sudden warmings in the Whole Atmosphere Community Climate
Loading...
Download
Official URL
Full text at PDC
Publication date
2012
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Geophysical Union
Citation
Abstract
Major stratospheric sudden warmings (SSW) occurring during Northern Hemisphere winter were identified in four runs of the Whole Atmosphere Community Climate Model (WACCM). Their characteristics are compared to those found by other authors using reanalysis data. The comparison shows that the frequency of occurrence of major SSW in the model is very similar to that found in reanalysis data, as is the occurrence of vortex splitting and displacement events. The main difference with respect to observations is that the modeled SSW are relatively longer lasting. WACCM simulates quite accurately some dynamical features associated with major SSW, despite the presence of outlier cases; however, the recently reported relationship between regional blocking and the type of SSW is only partially reproduced by WACCM. In general, the observed climatological and dynamical signatures of displacement SSW tend to be better reproduced by the model than those associated with splitting SSW. We also find that SSW in the model are often associated with an elevated polar cap stratopause, in agreement with recent observations. However, the simulations also show that there is not in general a close correspondence between major SSW and elevated polar cap stratopause events.
Description
© 2012 by the American Geophysical Union. We thank A. K. Smith, J. H. Richter, and D. R. Marsh, and three anonymous reviewers for many useful comments, which have helped improved this paper. The National Center for Atmospheric Research (NCAR) is sponsored by the U.S. National Science Foundation. L.T. was partially supported by the Xunta de Galicia while she was a visitor at NCAR. A.C. acknowledges support from the U.S. National Science Foundation under grant ARC 0632387, U.S. International Polar Year program.