In vivo subjective and objective longitudinal chromatic aberration after bilateral implantation of the same design of hydrophobic and hydrophilicintraocular lenses
Loading...
Official URL
Full text at PDC
Publication date
2015
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Citation
Abstract
PURPOSE: To measure the longitudinal chromatic aberration invivo using psychophysical and wavefront-sensing methods in patients with bilateral implantation of monofocal intraocular lenses (IOLs) of similar aspheric design but different materials (hydrophobic Podeye and hydrophilic Poday).
SETTING: Instituto de Optica, Consejo Superior de Investigaciones Cientificas, Madrid, Spain.
DESIGN: Prospective observational study.
METHODS: Measurements were performed with the use of psychophysical (480 to 700 nm) and wavefront-sensing (480 to 950 nm) methods using a custom-developed adaptive optics system. Chromatic difference-of-focus curves were obtained from best-focus data at each wavelength, and the longitudinal chromatic aberration was obtained from the slope of linear regressions to those curves.
RESULTS: The longitudinal chromatic aberration from psychophysical measurements was 1.37 diopters (D) ± 0.08 (SD) (hydrophobic) and 1.21 ± 0.08 D (hydrophilic). From wavefront-sensing, the longitudinal chromatic aberration was 0.88 ± 0.07 D and 0.73 ± 0.09 D, respectively. At 480 to 950 nm, the longitudinal chromatic aberration was 1.27 ± 0.09 D (hydrophobic) and 1.02 ± 0.13 D (hydrophilic). The longitudinal chromatic aberration was consistently higher in eyes with the hydrophobic IOL than in eyes with the hydrophilic IOL (a difference of 0.16 D and 0.15 D, respectively). Similar to findings in young phakic eyes, the longitudinal chromatic aberration from the psychophysical method was consistently higher than from wavefront-sensing, by 0.48 D (35.41%) for the hydrophobic IOL and 0.48 D (39.43%) for the hydrophilic IOL.
CONCLUSION: Longitudinal chromatic aberrations were smaller with hydrophilic IOLs than with hydrophobic IOLs of the same design.
Description
Received 16 January 2015, Revised 30 March 2015, Accepted 31 March 2015, Available online 17 December 2015