Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Paired Structures, Imprecision Types and Two-Level Knowledge Representation by Means of Opposites

dc.book.titleNovel Developments in Uncertainty Representation and Processing
dc.contributor.authorRodríguez González, Juan Tinguaro
dc.contributor.authorFranco De Los Ríos, Camilo A.
dc.contributor.authorGómez González, Daniel
dc.contributor.authorMontero De Juan, Francisco Javier
dc.contributor.editorKrassimir T., Atanassov
dc.contributor.editorCastillo, Oscar
dc.contributor.editorKacprzyk, Janusz
dc.contributor.editorKrawczak, Maciej
dc.contributor.editorMelin, Patricia
dc.contributor.editorSotirov, Sotir
dc.contributor.editorSotirova, Evdokia
dc.contributor.editorSzmidt, Eulalia
dc.contributor.editorDe Tré, Guy
dc.contributor.editorZadrozny, Slawomir
dc.date.accessioned2023-06-18T07:13:33Z
dc.date.available2023-06-18T07:13:33Z
dc.date.issued2016
dc.description.abstractOpposition-based models are a current hot-topic in knowledge representation. The point of this paper is to suggest that opposition can be in fact introduced at two different levels, those of the predicates of interest being represented (as short/tall) and of the logical references (true/false) used to evaluate the verification of the former. We study this issue by means of the consideration of different paired structures at each level. We also pay attention at how different types of fuzziness may be introduced in these paired structures to model imprecision and lack of knowledge. As a consequence, we obtain a unifying framework for studying the relationships between different knowledge representation models and different kinds of uncertainty.en
dc.description.departmentDepto. de Estadística e Investigación Operativa
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statusunpub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/33875
dc.identifier.citationTinguaro Rodríguez, J., Franco, C., Gómez, D., Montero, J.: Paired Structures, Imprecision Types and Two-Level Knowledge Representation by Means of Opposites. En: Atanassov, K.T., Castillo, O., Kacprzyk, J., Krawczak, M., Melin, P., Sotirov, S., Sotirova, E., Szmidt, E., De Tré, G., y Zadrożny, S. (eds.) Novel Developments in Uncertainty Representation and Processing. pp. 3-15. Springer International Publishing, Cham (2016)
dc.identifier.doi10.1007/978-3-319-26211-6_1
dc.identifier.isbn978-3-319-26211-6
dc.identifier.officialurlhttps//doi.org/10.1007/978-3-319-26211-6_1
dc.identifier.relatedurlhttp://link.springer.com/chapter/10.1007/978-3-319-26211-6_1
dc.identifier.urihttps://hdl.handle.net/20.500.14352/24707
dc.issue.number401
dc.page.final15
dc.page.initial3
dc.page.total400
dc.publisherSpringer
dc.relation.ispartofseriesAdvances in Intelligent Systems and Computing
dc.rights.accessRightsmetadata only access
dc.subject.cdu519.8
dc.subject.keywordIntuitionistic fuzzy sets
dc.subject.keywordBipolar fuzzy sets
dc.subject.keywordPaired fuzzy sets
dc.subject.ucmInvestigación operativa (Matemáticas)
dc.subject.unesco1207 Investigación Operativa
dc.titlePaired Structures, Imprecision Types and Two-Level Knowledge Representation by Means of Oppositesen
dc.typebook part
dc.volume.number1
dcterms.references1.Amo, A., Gómez, D., Montero, J., Biging, G.: Relevance and redundancy in fuzzy classification systems. Mathw. Soft Comput. 8, 203–216 (2001) 2.Amo, A., Montero, J., Biging, G., Cutello, V.: Fuzzy classification systems. Eur. J. Oper. Res. 156, 495–507 (2004) 3.Atanassov, K.T.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20, 87–96 (1986) 4.Atanassov, K.T.: Answer to D. Dubois, S. Gottwald, P. Hajek, J. Kacprzyk and H. Prade’s paper “Terminological difficulties in fuzzy set theory—the case of “Intuitionistic fuzzy sets”. Fuzzy Sets Syst. 156, 496–499 (2005) 5.Bustince, H., Fernandez, J., Mesiar, R., Montero, J., Orduna, R.: Overlap functions. Nonlinear Anal. 72, 1488–1499 (2010) 6.Cacioppo, J.T., Berntson, G.G.: The affect system, architecture and operating characteristics—current directions. Psychol. Sci. 8, 133–137 (1999) 7.Cacioppo, J.T., Gardner, W.L., Berntson, C.G.: Beyond bipolar conceptualizations and measures—the case of attitudes and evaluative space. Pers. Soc. Psychol. Rev. 1, 3–25 (1997) 8.Dubois, D., Prade, H.: An introduction to bipolar representations of information and preference. Int. J. Intell. Syst. 23, 866–877 (2008) 9.Dubois, D., Prade, H.: An overview of the asymmetric bipolar representation of positive and negative information in possibility theory. Fuzzy Sets Syst. 160, 1355–1366 (2009) 10.Dubois, D., Prade, H.: Gradualness, uncertainty and bipolarity—making sense of fuzzy sets. Fuzzy Sets Syst. 192, 3–24 (2012) 11.Fodor, J., Roubens, M.: Fuzzy Preference Modelling and Multicriteria Decision Support. Kluwer Academic, Dordrecht, Boston (1994) 12.Franco, C., Rodríguez, J.T., Montero, J.: Building the meaning of preference from logical paired structures. Knowl.-Based Syst. 83, 32–41 (2015) 13.Kaplan, K.: On the ambivalence-indifference problem in attitude theory and measurement—a suggested modification of the semantic differential technique. Psychol. Bull. 77, 361–372 (1972) 14.Likert, R.: A technique for the measurement of attitudes. Arch. Psychol. 140, 1–55 (1932) 15.Montero, J.: Comprehensive fuzziness. Fuzzy Sets Syst. 20, 79–86 (1986) 16.Montero, J.: Extensive fuzziness. Fuzzy Sets Syst. 21, 201–209 (1987) 17.Montero, J., Gómez, D., Bustince, H.: On the relevance of some families of fuzzy sets. Fuzzy Sets Syst. 158, 2429–2442 (2007) 18.Montero, J., Bustince, H., Franco, C., Rodríguez, J.T., Gómez, D., Pagola, M., Fernandez, J., Barrenechea, E.: Paired structures and bipolar knowledge representation,Working paper 19.Osgood, C.E., Suci, G.J., Tannenbaum, P.H.: The Measurement of Meaning. University of Illinois Press, Urbana (1957) 20.Rodríguez, J.T., Franco, C., Gómez, D., Montero, J.: Paired structures and other opposites-based models. Proc. of IFSA-EUSFLAT 1375–1381, 2015 (2015) 21.Rodríguez, J.T., Franco, C., Montero, J.: On the semantics of bipolarity and fuzziness. Proc. Eurofuse 193–205, 2011 (2011) 22.Rodríguez, J.T., Franco, C., Montero, J., Lu, J.: Paired structures in logical and semiotic models of natural language. Inf. Process. Manage. Uncertainty Knowl.-Based Syst. Part II, 566–575 (2014) 23.Rodríguez, J.T., Turunen, E., Ruan, D., Montero, J.: Another paraconsistent algebraic semantics for Lukasiewicz-Pavelka logic. Fuzzy Sets Syst. 242, 132–147 (2014)CrossRef 24.Ruspini, E.H.: A new approach to clus8tering. Inf. Control 15, 22–32 (1969) 25.Slovic, P., Peters, E., Finucane, M.L., MacGregor, D.G.: Affect, risk, and decision making. Health Psychol. 24, 35–40 (2005) 26.de Soto, A.R., Trillas, E.: On antonym and negate in fuzzy logic. Int. J. Intell. Syst. 14, 295–303 (1999) 27.Trillas, E.: On the use of words and fuzzy sets. Inf. Sci. 176, 1463–1487 (2006) 28.Trillas, E., Moraga, C., Guadarrama, S., Cubillo, S., Castineira, E.: Computing with antonyms. Forg. New Front. Fuzzy Pioneers I 217, 133–153 (2007) 29.Turunen, E., Öztürk, M., Tsoukiàs, A.: Paraconsistent semantics for Pavelka style fuzzy sentential logic. Fuzzy Sets Syst. 161, 1926–1940 (2010)
dspace.entity.typePublication
relation.isAuthorOfPublicationddad170a-793c-4bdc-b983-98d313c81b03
relation.isAuthorOfPublication4dcf8c54-8545-4232-8acf-c163330fd0fe
relation.isAuthorOfPublication9e4cf7df-686c-452d-a98e-7b2602e9e0ea
relation.isAuthorOfPublication.latestForDiscoveryddad170a-793c-4bdc-b983-98d313c81b03

Download