Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Optimizing Thermoelectric Properties through Compositional Engineering in Ag-Deficient AgSbTe<sub>2</sub> Synthesized by Arc Melting

Citation

Jesús Prado-Gonjal, Elena García-Calvo, Javier Gainza, Oscar J. Durá, Catherine Dejoie, Norbert M. Nemes, José Luis Martínez, José Antonio Alonso, and Federico Serrano-Sánchez ACS Applied Electronic Materials 2024 6 (5), 2969-2977 DOI: 10.1021/acsaelm.3c01653

Abstract

Thermoelectric materials offer a promising avenue for energy management, directly converting heat into electrical energy. Among them, AgSbTe2 has gained significant attention and continues to be a subject of research at further improving its thermoelectric performance and expanding its practical applications. This study focuses on Ag-deficient Ag0.7Sb1.12Te2 and Ag0.7Sb1.12Te1.95Se0.05 materials, examining the impact of compositional engineering within the AgSbTe2 thermoelectric system. These materials have been rapidly synthesized using an arc-melting technique, resulting in the production of dense nanostructured pellets. Detailed analysis through scanning electron microscopy (SEM) reveals the presence of a layered nanostructure, which significantly influences the thermoelectric properties of these materials. Synchrotron X-ray diffraction reveals significant changes in the lattice parameters and atomic displacement parameters (ADPs) that suggest a weakening of bond order in the structure. The thermoelectric characterization highlights the enhanced power factor of Ag-deficient materials that, combined with the low glass-like thermal conductivity, results in a significant improvement in the figure of merit, achieving zT values of 1.25 in Ag0.7Sb1.12Te2 and 1.01 in Ag0.7Sb1.12Te1.95Se0.05 at 750 K.

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections