Optimizing Thermoelectric Properties through Compositional Engineering in Ag-Deficient AgSbTe<sub>2</sub> Synthesized by Arc Melting

Loading...
Thumbnail Image
Full text at PDC
Publication date

2024

Authors
García-Calvo, Elena
Gainza, Javier
Durá, Oscar J.
Dejoie, Catherine
Martínez, José Luis
Alonso, José Antonio
Serrano-Sánchez, Federico
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
ACS
Citations
Google Scholar
Citation
Jesús Prado-Gonjal, Elena García-Calvo, Javier Gainza, Oscar J. Durá, Catherine Dejoie, Norbert M. Nemes, José Luis Martínez, José Antonio Alonso, and Federico Serrano-Sánchez ACS Applied Electronic Materials 2024 6 (5), 2969-2977 DOI: 10.1021/acsaelm.3c01653
Abstract
Thermoelectric materials offer a promising avenue for energy management, directly converting heat into electrical energy. Among them, AgSbTe2 has gained significant attention and continues to be a subject of research at further improving its thermoelectric performance and expanding its practical applications. This study focuses on Ag-deficient Ag0.7Sb1.12Te2 and Ag0.7Sb1.12Te1.95Se0.05 materials, examining the impact of compositional engineering within the AgSbTe2 thermoelectric system. These materials have been rapidly synthesized using an arc-melting technique, resulting in the production of dense nanostructured pellets. Detailed analysis through scanning electron microscopy (SEM) reveals the presence of a layered nanostructure, which significantly influences the thermoelectric properties of these materials. Synchrotron X-ray diffraction reveals significant changes in the lattice parameters and atomic displacement parameters (ADPs) that suggest a weakening of bond order in the structure. The thermoelectric characterization highlights the enhanced power factor of Ag-deficient materials that, combined with the low glass-like thermal conductivity, results in a significant improvement in the figure of merit, achieving zT values of 1.25 in Ag0.7Sb1.12Te2 and 1.01 in Ag0.7Sb1.12Te1.95Se0.05 at 750 K.
Research Projects
Organizational Units
Journal Issue
Description
Keywords
Collections