Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Fermi surface and electronic structure of Pb/Ge(111)

dc.contributor.authorMascaraque Susunaga, Arantzazu
dc.contributor.authorAvila, J.
dc.contributor.authorMichel, E. G.
dc.contributor.authorAsensio, M. C.
dc.date.accessioned2023-06-20T19:14:06Z
dc.date.available2023-06-20T19:14:06Z
dc.date.issued1998-06-15
dc.description© 1998 The American Physical Society. We thank E. Tosatti, G. LeLay, and F. Flores for discussions, J. Osterwalder and his group for their assistance and support in the construction of the manipulator, and R. Stumpf for communicating to us unpublished results. This work was financed by DGICYT (Spain) under Grant Nos. PB-94-1527 and PB-94-0022-C02-01. The access of A.M. and E.G.M. to LURE, Centre Universitaire Paris-Sud, was supported through the Large Scale Facilities program of the European Union. A.M. thanks Eusko Jaurlaritza for financial support.
dc.description.abstractThe electronic structure of Pb/Ge(111) has been probed along the temperature-induced phase transition ct -root 3X root 3R30 degrees double right arrow 3 X 3 using angle-resolved photoemission. The alpha-root 3X root 3R30 degrees phase is metallic due to the existence of a half-filled, dispersing surface band. The 3 X 3 phase is characterized by the appearance of an additional surface band with 3 X 3 periodicity, whose role in the phase transition is discussed. The Fermi-surface topology of the alpha-root 3X root 3R30 degrees phase has been probed using angle-resolved photoemission. Its shape is undulated, and it resembles strongly the theoretical prediction, with a Fermi momentum of 0.31 Angstrom(-1) along <(Gamma K)over bar> directions and 0.40 Angstrom(-1) along <(Gamma M)over bar> directions. These values were determined from different experimental methods, and agree with the values needed for a perfect 3 X 3 nesting. However, the Fermi surface exhibits no large flat areas suitable for electronic nesting.
dc.description.departmentDepto. de Física de Materiales
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipDGICYT (Spain)
dc.description.sponsorshipEuropean Union
dc.description.sponsorshipEusko Jaurlaritza
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/28620
dc.identifier.doi10.1103/PhysRevB.57.14758
dc.identifier.issn0163-1829
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevB.57.14758
dc.identifier.relatedurlhttp://journals.aps.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/59421
dc.issue.number23
dc.journal.titlePhysical review B
dc.language.isoeng
dc.page.final14765
dc.page.initial14758
dc.publisherAmerican Physical Society
dc.relation.projectIDPB-94-1527
dc.relation.projectIDPB-94-0022-C02-01
dc.rights.accessRightsopen access
dc.subject.cdu538.9
dc.subject.keywordCharge-Density wave
dc.subject.keywordAngle-Resolved photoemission
dc.subject.keywordGe(111) Surfaces
dc.subject.keywordPb
dc.subject.keywordPhase
dc.subject.keywordW(001)
dc.subject.keywordReconstructions
dc.subject.keywordSpectroscopy
dc.subject.keywordInterfaces
dc.subject.keywordSystems
dc.subject.ucmFísica de materiales
dc.titleFermi surface and electronic structure of Pb/Ge(111)
dc.typejournal article
dc.volume.number57
dcterms.references1. For a recent review see G. Grüner, Density Waves in Solids (Addison-Wesley, Reading, MA, 1994). 2. E. Tosatti in Electronic Surface and Interface States in Metallic Systems, edited by E. Bertel and M. Donath (World Scientific, Singapore, 1995), and references therein. 3. R. E. Peierls, Quantum Theory of Solids (Oxford University Press, New York, 1955). 4. E. Tosatti, Festkoerperprobleme XV, 113 (1975). 5. S. D. Kevan, J. Electron Spectrosc. Relat. Phenom. 75, 175 (1995) and references therein. 6. E. Tosatti, Solid State Commun. 25, 637 (1978). 7. M. K. Debe and D. A. King, J. Phys. C 10, L303 (1977). 8. T. E. Felter, R. A. Barker, and P. J. Estrup, Phys. Rev. Lett. 38, 1138 (1977). 9. X. W. Wang and W. Weber, Phys. Rev. Lett. 58, 1452 (1987). 10. K. E. Smith, G. S. Elliott, and S. D. Kevan, Phys. Rev. B 42, 5385 (1990). 11. F. M. Hoffmann, B. N. J. Persson, W. Walter, D. A. King, C. J. Hirschnagl, and G. P. Williams, Phys. Rev. Lett. 72, 1256 (1994). 12. J. Carpinelli, H. Weitering, E. W. Plummer, and R. Stumpf, Nature (London) 381, 398 (1996). 13. T. Ichikawa, Solid State Commun. 46, 827 (1983). 14. R. Feidenhans’l, J. S. Pedersen, M. Nielsen, F. Grey, and R. L. Johnson, Surf. Sci. 178, 927 (1986). 15. L. Seehofer, D. Daboue, G. Falkenberg, and R. L. Johnson, Surf. Sci. 307-309, 698 (1994). 16. L. Seehofer, D. Daboul, G. Falkenberg, and R. L. Johnson, Surf. Sci. 314, L879 (1994). 17. A second √3X√3R30° reconstruction (ß - √3 x √(3 ) R30º) phase exists at higher coverage. We restrict ourselves in this paper to Q_Pb=1/2 ML, i.e., the α phase. 18. P. Aebi, J. Osterwalder, P. Schwaller, L. Schlapbach, M. Shimoda, T. Mochiku, and K. Kadowaki, Phys. Rev. Lett. 72, 2757 (1994). 19. J. Avila, C. Casado, M. C. Asensio, J. L. Perez, M. C. Muñoz, and F. Soria, J. Vac. Sci. Technol. A 13, 1501 (19959. 20. N. L. Saini, J. Avila, A. Bianconi, A. Lanzara, M. C. Asensio, S. Tajima, G. D. Gu, and N. Kashizuka, Phys. Rev. Lett. 79, 3467 (19979. 21. A. Goldoni, C. Cepek, and S. Modesti, Phys. Rev. B 55, 4109 (1997). 22. K. Würde, P. Krüger, A. Mazur, and J. Pollmann, Surf. Rev. Lett. (to be published9. 23. A. Mascaraque, J. Avila, M. C. Asensio, and E. G. Michel (unpublished). 24. J. A. Carlisle, T. Miller, and T. C. Chiang, Phys. Rev. B 47, 3790 (1993). 25. G. LeLay, V. Yu. Aristov, L. Seehofer, T. Buslaps, R. L. Johnson, M. Gothelid, M. Hammar, U. O. Karlsson, S. A. Flodstróm, R. Feidenhans’l, M. Nielsen, E. Findeisen, and R. I. G. Uhrberg, Surf. Sci. 307-309, 280 (1994). 26. D. R. Heslinga, H. H. Weitering, D. P. van der Werf, T. M. Klapwijk, and T. Nibma, Phys. Rev. Lett. 64, 1589 (1990). 27. G. LeLay, K. Hricovini, and J. Bonnet, Appl. Surf. Sci. 41/42, 25 (1989). 28. J. A. Carlisle, T. Miller, and T. C. Chiang, Phys. Rev. B 47, 10 342 (1993). 29. L. Seehofer, G. Falkenberg, and R. L. Johnson, Surf. Sci. 290, 15 (1993). 30. C. J. Karlsson, E. Landemark, Y. C. Chao, and R. I. G. Uhrberg, Phys. Rev. B 45, 6321 (1992). 31. A. Mascaraque, J. Avila, M. C. Asensio, and E. G. Michel, Surf. Sci. (to be published). 32. J. E. Northrup, Phys. Rev. Lett. 53, 683 (1984). 33. B. P. Tonner, H. Li, M. J. Robrecht, M. Onellion, and J. L. Erskine, Phys. Rev. B 36, 989 (1987). 34. Data obtained from K_2 2G_11K_ 3, where the intensity of S_2 is highest. 35. Th. Straub, R. Claessen, P. Steiner, S. Hüfner, V. Eyert, K. Friemelt, and E. Bucher, Phys. Rev. B 55, 13 473 (1997). 36. ki is conserved in the photoemission process. See F. J. Himpel, Adv. Phys. 32, 1 (1983) for details. 37. The origin of this feature lies in the enhanced intensity detected at~0.2 eV BE at T_11 , which is probably related with the other phenomenafound in this area at LT (see Sec. IV). 38. The intensity enhancement in the two bottom corners of Fig. 6 (top) comes from a larger bulk band-gap projection and matrix element effects in the second Brillouin zone (Ref. 23). 39. G. H. Gweon, J. W. Allen, J. A. Clack, Y. X. Zhang, D. M. Poirier, P. J. Benning, C. G. Olson, J. Marcus, and C. Schlenker, Phys. Rev. B 55, R13 353 (19979. 40. H. H. Weitering, X. Shi, P. D. Johnson, J. Chen, N. J. DiNardo, and K. Kempa, Phys. Rev. Lett. 78, 1331 (1997). 41. M. Göthelid, M. Bjrkqvist, T. M. Grehk, G. Le Lay, and U. O. Karlsson, Phys. Rev. B 52, R14 352 (19959.
dspace.entity.typePublication
relation.isAuthorOfPublication9d984e3c-69fb-476e-af0b-5134c4d26028
relation.isAuthorOfPublication.latestForDiscovery9d984e3c-69fb-476e-af0b-5134c4d26028

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Mascaraque,A 50libre.pdf
Size:
672.33 KB
Format:
Adobe Portable Document Format

Collections