Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

S-shaped bifurcation branch in a quasilinear multivalued model arising in climatology

dc.contributor.authorDíaz Díaz, Jesús Ildefonso
dc.contributor.authorArcoya Álvarez, David
dc.contributor.authorTello Del Castillo, José Ignacio
dc.date.accessioned2023-06-20T16:54:12Z
dc.date.available2023-06-20T16:54:12Z
dc.date.issued1998-11-20
dc.description.abstractIn this paper we show the existence of a continuous and unbounded connected S-shaped set {(Q, u)} where Q is the solar constant and u satisfies a quasilinear eventually multivalued stationary equation on a Riemannian manifold without boundary arising as a stationary energy balance model for the earth surface temperature.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipDGICYT
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/15680
dc.identifier.doi10.1006/jdeq.1998.3502
dc.identifier.issn0022-0396
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/S0022039698935021
dc.identifier.relatedurlhttp://www.sciencedirect.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57381
dc.issue.number1
dc.journal.titleJournal of Differential Equations
dc.language.isoeng
dc.page.final225
dc.page.initial215
dc.publisherElsevier
dc.relation.projectIDPB93�0443
dc.rights.accessRightsrestricted access
dc.subject.cdu514.7
dc.subject.keywordS-shaped bifurcation branch
dc.subject.keyworddegenerated multivalued equations
dc.subject.keywordRiemannian manifolds
dc.subject.keywordclimatolog
dc.subject.ucmGeometría diferencial
dc.subject.unesco1204.04 Geometría Diferencial
dc.titleS-shaped bifurcation branch in a quasilinear multivalued model arising in climatology
dc.typejournal article
dc.volume.number150
dcterms.referencesA. Ambrosetti, Critical points and nonlinear variational problems, Bull. Soc. Math. France, Memoire 49 (1992) [supplement]. A. Ambrosseti, M. Calahorrano, and F. Dobarro, Global branching for discontinuous problems, Comment. Math. Univ. Carolinae 31 (1990), 213–222. D. Arcoya and M. Calahorrano, Multivalued non-positone problems, Rend. Mat. Accad. Lincei (9) 1 (1990), 117–123. T. Aubin, "Nonlinear Analysis on Manifolds. Monge-Ampere Equations," Springer-Verlag, New York, 1982. Ph. Benilan, M. G. Crandall, and P. Sachs, Some L 1 existence and dependence results for semilinear elliptic equations under nonlinear boundary conditions, Appl. Math. Optim. 17 (1988), 203–224. H. Brezis, "Opérateurs maximaux monotones et semigroupes de contractions dans les espaces de Hilbert," North-Holland, Amsterdam, 1973. M. I. Budyko, The effects of solar radiation variations on the climate of the Earth, Tellus 21 (1969), 611–619. J. I. Díaz, Mathematical analysis of some diffusive energy balance climate models, in "Mathematics, Climate and Environment" (J. I. Díaz and J. L. Lions, Eds.), pp. 28–56, Masson, Paris, 1993. J. I. Díaz, J. Hernández, and L. Tello, On the multiplicity of equilibrium solutions to a nonlinear diffusion equation on a manifold arising in Climatology, J. Math. Anal. Appl. 216 (1997), 593–613. J. I. Díaz and L. Tello, Sobre un modelo bidimensional en Climatología, in "Actas del XIII CEDYA/III Congreso de Matemática Aplicada" (A. Casal et al., Eds.), pp. 310–315, 1995. J. I. Díaz and L. Tello, A nonlinear parabolic problem on a Riemannian manifold without boundary arising in climatology, Collect. Math. (1998), to appear. J. L. Gámez, Sub- and super-solutions in bifurcation problems, Nonlin. Anal. 28, No. 4 (1997), 625–632. M. Ghil, Climate stability for a Sellers-type model, J. Atmos. Sci. 33 (1976), 3–20. M. Ghil and S. Childress, "Topics in Geophysical Fluid Dynamics: Atmospheric Dynamics, Dynamo Theory and Climate Dynamics," Applied Mathematical Sciences, Vol. 60, Springer-Verlag, Berlin/New York, 1987. G. Hetzer, The structure of the principal component for semilinear diffusion equations from energy balance climate models, Houston J. Math. 16 (1990), 203–216. G. Hetzer, S-shapedness for energy balance climate models of Sellers type, in "The Mathematics of Models for Climatology and Environment" (J. I. Díaz, Ed.), pp. 253–288, Springer-Verlag, Heidelberg, 1996. I. Massabo and C. A. Stuart, Elliptic eigenvalue problem with discontinuous nonlinearities, J. Math. Anal. Appl. 66 (1978), 261–281. G. R. North, Multiple solutions in energy balance climate models, in "Paleogeography, Paleoclimatology, Paleoecology," Vol. 82, pp. 225–235, Elsevier, Amsterdam, 1990. P. H. Rabinowitz, A global theorem for nonlinear eigenvalue problems and applications, in "Contributions to Nonlinear Functional Analysis" (E. H. Zarantonello, Ed.), pp. 11–36, Academic Press, New York, 1971. W. D. Sellers, A global climatic model based on the energy balance of the earth-atmosphere system, J. Appl. Meteorol. 8 (1969), 392–400. B. E. Schmidt, "Bifurcation of Stationary Solutions for Legendre-Type Boundary Value Problems Arising from Energy Balance Models," Thesis, Auburn University, 1994. P. H. Stone, A simplified radiative-dynamical model for the static stability of rotating atmospheres, J. Atmos. Sci. 29, No. 3 (1972), 405–418. G. T. Whyburn, "Topological Analysis," Princeton Univ. Press, Princeton, NJ, 1955.
dspace.entity.typePublication
relation.isAuthorOfPublication34ef57af-1f9d-4cf3-85a8-6a4171b23557
relation.isAuthorOfPublication3a50a640-674c-4de5-94ce-fdc231b44d7d
relation.isAuthorOfPublication.latestForDiscovery34ef57af-1f9d-4cf3-85a8-6a4171b23557

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
84.pdf
Size:
246.58 KB
Format:
Adobe Portable Document Format

Collections