Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

High quality factor indium oxide mechanical microresonators

dc.contributor.authorBartolomé Vílchez, Javier
dc.contributor.authorCremades Rodríguez, Ana Isabel
dc.contributor.authorPiqueras De Noriega, Francisco Javier
dc.date.accessioned2023-06-18T06:49:22Z
dc.date.available2023-06-18T06:49:22Z
dc.date.issued2015-11-09
dc.description©2015 AIP Publishing LLC. This work has been supported by MINECO (Project Nos. MAT 2012-31959 and CSD 2009-00013). J.B. acknowledges the financial support from Universidad Complutense de Madrid.
dc.description.abstractThe mechanical resonance behavior of as-grown In_2O_3 microrods has been studied in this work by in-situ scanning electron microscopy (SEM) electrically induced mechanical oscillations. Indium oxide microrods grown by a vapor–solid method are naturally clamped to an aluminum oxide ceramic substrate, showing a high quality factor due to reduced energy losses during mechanical vibrations. Quality factors of more than (10)^5 and minimum detectable forces of the order of (10)^(16) N/Hz^(1/2) demonstrate their potential as mechanical microresonators for real applications. Measurements at low- vacuum using the SEM environmental operation mode were performed to study the effect of extrinsic damping on the resonators behavior. The damping coefficient has been determined as a function of pressure.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO)
dc.description.sponsorshipUniversidad Complutense de Madrid
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/35241
dc.identifier.doi10.1063/1.4935708
dc.identifier.issn0003-6951
dc.identifier.officialurlhttp://dx.doi.org/10.1063/1.4935708
dc.identifier.relatedurlhttp://scitation.aip.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/24308
dc.issue.number19
dc.journal.titleApplied physics letters
dc.language.isoeng
dc.publisherAmer Inst Physics
dc.relation.projectIDMAT 2012-31959
dc.relation.projectIDCSD 2009-00013
dc.rights.accessRightsopen access
dc.subject.cdu538.9
dc.subject.keywordNanomechanical resonators
dc.subject.keywordCantilevers
dc.subject.keywordNanobelts
dc.subject.keywordGrowth
dc.subject.keywordNanowires
dc.subject.keywordResonance
dc.subject.keywordPressure
dc.subject.keywordDiamond
dc.subject.ucmFísica de materiales
dc.subject.ucmFísica del estado sólido
dc.subject.unesco2211 Física del Estado Sólido
dc.titleHigh quality factor indium oxide mechanical microresonators
dc.typejournal article
dc.volume.number107
dcterms.references1 K. Eom, H. S. Park, D. S. Yoon, and T. Kwon, Phys. Rep. 503, 115 (2011). 2 B. Ilic, D. Czaplewski, H. G. Craighead, P. Neuzil, C. Campagnolo, and C. Batt, Appl. Phys. Lett. 77, 450 (2000). 3 M. Li, H. X. Tang, and M. L. Roukes, Nat. Nanotechnol. 2, 114 (2007). 4 J. Moser, J. G€uttinger, A. Eichler, M. J. Esplandiu, D. E. Liu, M. I. Dykman, and A. Bachtold, Nat. Nanotechnol. 8, 493 (2013). 5 K. Jensen, K. Kim, and A. Zettl, Nat. Nanotechnol. 3, 533 (2008). 6 J.-W. Han, J.-H. Ahn, M.-W. Kim, J. O. Lee, J.-B. Yoon, and Y.-K. Choi, Small 6, 1197 (2010). 7 K. Jensen, J. Weldon, H. Garcia, and A. Zettl, Nano Lett. 7, 3508 (2007). 8 M. Marzencki, J. Microelectromech. Syst. 18, 1444 (2009). 9 T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, Phys. Rev. Lett. 95, 033901 (2005). 10H. Rokhsari, T. Kippenberg, T. Carmon, and K. Vahala, IEEE J. Sel. Top. Quantum Electron. 12, 96 (2006). 11G. Anetsberger, R. Rivie`re, A. Schliesser, O. Arcizet, and T. J. Kippenberg, Nat. Photonics 2, 627 (2008). 12K.-K. Ni, R. Norte, D. J. Wilson, J. D. Hood, D. E. Chang, O. Painter, and H. J. Kimble, Phys. Rev. Lett. 108, 214302 (2012). 13H. Najar, M.-L. Chan, H.-A. Yang, L. Lin, D. G. Cahill, and D. A. Horsley, Appl. Phys. Lett. 104, 151903 (2014). 14Y. Tao, J. M. Boss, B. A. Moores, and C. L. Degen, Nat. Commun. 5, 3638 (2014). 15M. J. Burek, D. Ramos, P. Patel, I. W. Frank, and M. Lonar, Appl. Phys. Lett. 103, 131904 (2013). 16K. Y. Yasumura, T. D. Stowe, E. M. Chow, T. Pfafman, T. W. Kenny, B. C. Stipe, and D. Rugar, J. Microelectromech. Syst. 9, 117 (2000). 17T. Ono and M. Esashi, Meas. Sci. Technol. 15, 1977 (2004). 18S. Schmid and C. Hierold, J. Appl. Phys. 104, 093516 (2008). 19J. Bartolome, A. Cremades, and J. Piqueras, J. Mater. Chem. C 1, 6790 (2013). 20C. Li, D. Zhang, S. Han, X. Liu, T. Tang, and C. Zhou, Adv. Mater. 15, 143 (2003). 21C.-J. Chen, M.-Y. Chern, C.-T. Wu, and C.-H. Chen, Mater. Res. Bull. 45, 230 (2010). 22Z. W. Pan, Z. R. Dai, and Z. L. Wang, Science 291, 1947 (2001). 23J. Jeong, J. Lee, C. Lee, S. An, and G.-C. Yi, Chem. Phys. Lett. 384, 246 (2004). 24B.-K. Lee, Y.-H. Song, and J.-B. Yoon, in Proceedings of IEEE 22nd International Conference on Indium Tin Oxide (ITO) Transparent MEMS Switches: Micro Electro Mechanical Systems, Sorrento, Italy, 25–29 January 2009, pp. 148–151. 25I. Hamberg and C. G. Granqvist, J. Appl. Phys. 60, R123 (1986). 26K. H. L. Zhang, A. Regoutz, R. G. Palgrave, D. J. Payne, R. G. Egdell, A. Walsh, S. P. Collins, D. Wermeille, and R. A. Cowley, Phys. Rev. B. 84, 233301 (2011). 27A. Walsh, C. Richard, A. Catlow, A. A. Alexey, A. Sokol, and S. M. Woodley, Chem. Mater. 21, 4962 (2009). 28D. Liu, W. W. Lei, B. Zou, S. D. Yu, J. Hao, K. Wang, B. B. Liu, Q. L. Cui, and G. T. Zou, J. Appl. Phys. 104, 083506 (2008). 29F. Fuchs and F. Bechstedt, Phys. Rev. B. 77, 155107 (2008). 30J. Bartolome, P. Hidalgo, D. Maestre, A. Cremades, and J. Piqueras, Appl. Phys. Lett. 104, 161909 (2014). 31X. D. Bai, P. X. Gao, Z. L. Wang, and E. G. Wang, Appl. Phys. Lett. 82, 4806 (2003). 32C. Q. Chen, Y. Shi, Y. S. Zhang, J. Zhu, and Y. J. Yan, Phys. Rev. Lett. 96, 075505 (2006). 33S. Perisanu, V. Gouttenoire, P. Vincent, A. Ayari, M. Choueib, M. Bechelany, D. Cornu, and S. T. Purcell, Phys. Rev. B 77, 165434 (2008). 34Y. Hao, G. Meng, C. Ye, and L. Zhang, Cryst. Growth Des. 5, 1617 (2005). 35J. Y. Lao, J. G. Wen, and Z. F. Ren, Nano Lett. 2, 1287 (2002). 36K. L. Ekinci and M. L. Roukes, Rev. Sci. Instrum. 76, 061101 (2005). 37P. Ovartchaiyapong, L. M. A. Pascal, B. A. Myers, P. Lauria, and A. C. Bleszynski Jayich, Appl. Phys. Lett. 101, 163505 (2012). 38F. R. Blom, S. Bouwstra, M. Elwenspoek, and J. H. J. Fluitman, J. Vac. Sci. Technol. B 10, 19 (1992). 39R. Vogelgesang, A. K. Ramdas, S. Rodriguez, M. Grimsditch, and T. Anthony, Phys. Rev. B 54, 3989 (1996). 40Z. Li and R. C. Brandt, Int. J. High Technol. Ceram. 4, 1 (1988). 41A. Khan, J. Philip, and P. Hess, J. Appl. Phys. 95, 1667 (2004). 42S. Guillon, D. Saya, L. Mazenq, S. Perisanu, P. Vincent, A. Lazarus, O. Thomas, and L. Nicu, Nanotechnology 22, 245501 (2011). 43D. M. Photiadis and J. A. Judge, Appl. Phys. Lett. 85, 482 (2004).
dspace.entity.typePublication
relation.isAuthorOfPublication584d700c-79ff-4e20-a35d-519d0958238e
relation.isAuthorOfPublicationda0d631e-edbf-434e-8bfd-d31fb2921840
relation.isAuthorOfPublication68dabfe9-5aec-4207-bf8a-0851f2e37e2c
relation.isAuthorOfPublication.latestForDiscovery584d700c-79ff-4e20-a35d-519d0958238e

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
CremadesAna67 libre.pdf
Size:
1.49 MB
Format:
Adobe Portable Document Format

Collections