Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

Differential equations connecting VaR and CVaR

dc.contributor.authorBalbás De La Corte, Alejandro
dc.contributor.authorBalbás, Beatriz
dc.contributor.authorBalbás Aparicio, Raquel
dc.date.accessioned2023-06-18T05:39:32Z
dc.date.available2023-06-18T05:39:32Z
dc.date.issued2017
dc.descriptionPublicado como artículo de revista: Balbas, Alejandro & Balbás, Beatriz & Balbás, Raquel. (2017). Differential equations connecting VaR and CVaR. Journal of Computational and Applied Mathematics. 326. (2017) 247-267 http://dx.doi.org/10.1016/j.cam.2017.05.037
dc.description.abstractThe Value at Risk (VaR) is a very important risk measure for practitioners, supervisors and researchers. Many practitioners draw on VaR as a critical instrument in Risk Management and other Actuarial/Financial problems, while supervisors and regulators must deal with VaR due to the Basel Accords and Solvency II, among other reasons. From a theoretical point of view VaR presents some drawbacks overcome by other risk measures such as the Conditional Value at Risk (CVaR). VaR is neither di¤erentiable nor sub-additive because it is neither continuous nor convex. On the contrary, CVaR satisfies all of these properties, and this simplifies many analytical studies if VaR is replaced by CVaR. In this paper several di¤erential equations connecting both VaR and CVaR will be presented. They will allow us to address several important issues involving VaR with the help of the CVaR properties. This new methodology seems to be very e¢ cient. In particular, a new VaR Representation Theorem may be found, and optimization problems involving VaR or probabilistic constraints always have an equivalent di¤erentiable optimization problem. Applications in VaR, marginal VaR, CVaR and marginal CVaR estimates will be addressed as well. An illustrative actuarial numerical example will be given.
dc.description.departmentDepto. de Economía Financiera y Actuarial y Estadística
dc.description.facultyFac. de Ciencias Económicas y Empresariales
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/57774
dc.identifier.issn1989-8843
dc.identifier.officialurlhttp://hdl.handle.net/10016/24017
dc.identifier.urihttps://hdl.handle.net/20.500.14352/22962
dc.issue.number17-01
dc.journal.titleJournal of Computational and Applied Mathematics
dc.language.isoeng
dc.page.final267
dc.page.initial247
dc.page.total28
dc.publisherUniversidad Carlos III de Madrid. Instituto para el Desarrollo Empresarial
dc.relation.ispartofseriesWorking paper Business Economic Series
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subject.jelC65
dc.subject.jelG11
dc.subject.jelG12
dc.subject.jelG22
dc.subject.keywordVaR and CVaR
dc.subject.keywordDifferential equations
dc.subject.keywordVaR representation theorem
dc.subject.keywordRisk optimization and probabilistic constraints
dc.subject.keywordRisk and marginal risk estimation.
dc.subject.ucmEconometría (Economía)
dc.subject.ucmMercados bursátiles y financieros
dc.subject.ucmSeguros
dc.subject.unesco5302 Econometría
dc.subject.unesco5304.05 Seguros
dc.titleDifferential equations connecting VaR and CVaR
dc.typetechnical report
dc.volume.number326
dspace.entity.typePublication
relation.isAuthorOfPublicationc1999ca1-5b7d-4314-af45-1542598854c5
relation.isAuthorOfPublication5f4fa038-ff5c-48af-9ee5-0a7a47767e27
relation.isAuthorOfPublication.latestForDiscovery5f4fa038-ff5c-48af-9ee5-0a7a47767e27

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Differential equations-Balbás 2017 (Doc. Trab.).pdf
Size:
298.24 KB
Format:
Adobe Portable Document Format