Publication:
Optimal achromatic wave retarders using two birefringent wave plates

dc.contributor.authorVilas Prieto, José Luis
dc.contributor.authorSánchez Brea, Luis Miguel
dc.contributor.authorBernabeu Martínez, Eusebio
dc.date.accessioned2023-06-19T13:24:47Z
dc.date.available2023-06-19T13:24:47Z
dc.date.issued2013-03-20
dc.description© 2013 Optical Society of America. This work was supported by the project “Photonic Transceiver for Secure Communications Space” of the European Space Agency with Tecnológica Ingeniería, Calidad y Ensayos, and by project DPI2011-27851 of the Ministerio de Ciencia e Innovacion of Spain.
dc.description.abstractTwo plates of different birefringence material can be combined to obtain an achromatic wave retarder. In this work, we achieve a correction for the overall retardation of the system that extends the relation to any azimuth. Current techniques for the design of achromatic wave retarders do not present a parameter that characterizes its achromatism on a range of wavelengths. Thus, an achromatic degree has been introduced, in order to determine the optimal achromatic design composed with retarder plates for a spectrum of incident light. In particular, we have optimized a quarter retarder using two wave plates for the visible spectrum. Our technique has been compared to previous results, showing significant improvement.
dc.description.departmentDepto. de Óptica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipAgencia Espacial Europea (ESA)
dc.description.sponsorshipTecnológica Ingenieria Calidad y Ensayos (España)
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MICINN), España
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/26076
dc.identifier.citation1. D. S. Kliger, J. W. Lewis, and C. E. Randall, Polarized Light in Optics and Spectroscopy (Academic, 1990). 2. D. Goldstein, Polarized Light, 3rd ed. (CRC, 2003). 3. S. Pancharatnam, “Achromatic combinations of birefringent plates. Part II. An achromatic quarter-wave plate,” Proc. Indian Acad. Sci. 41A, 137–144 (1955). 4. P. Hariharan, “Achromatic retarders using quartz and mica,” Meas. Sci. Technol. 6, 1078–1079 (1995). 5. J. J. Gil and E. Bernabeu, “Diseño de rotores, compensadores y moduladores de retardo a partir de retardadores comerciales,” Opt. Pura Apl. 15, 39–43 (1982). 6. P. Hariharan and D. Malacara, “A simple achromatic half-wave retarder,” J. Mod. Opt. 41, 15–18 (1994). 7. B. Boulbry, B. Bousquet, B. Le Jeune, Y. Guern, and J. Lotrian, “Polarization errors associated with zero-order achromatic quarter-wave plates in the whole visible spectral range,” Opt. Express 9, 225–235 (2001). 8. Saha, K. Bhattacharya, and A. K. Chakraborty, “Achromatic quarter-wave plate using crystalline quartz,” Appl. Opt. 51, 1976–1980 (2012). 9. J. B. Masson and G. Gallot, “Terahertz achromatic quarter-wave plate,” Opt. Lett. 31, 265–267 (2006). 10. R. Pan, C. Lai, C. Lin, C. Hsieh, and C. Pan, “Achromatic liquid crystal phase plate for short laser pulses, molecular crystals and liquid crystals,” Mol. Cryst. Liq. Cryst. 527, 65/[221]–71/[227] (2010). 11. G. Kang, Q. Tan, X. Wang, and G. Jin, “Achromatic phase retarder applied to MWIR & LWIR dual-band,” Opt. Express 18, 1695–1703 (2010). 12. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge University, 1999). 13. S. Chandrasekhat, “The dispersion and thermo-optic behavior of vitreous silica,” Proc. Indian Acad. Sci. 34A, 275–282 (1951). 14. G. Ghosh, “Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals,” Opt. Commun. 163, 95–102 (1999). 15. J. M. Beckers, “Achromatic linear retarders,” Appl. Opt. 10, 973–975 (1971). 16. M. Bass, C. DeCusatis, J. Enoch, V. Lakshminarayanan, G. Li, C. MacDonald, V. Mahajan, and E. Van Stryland, Handbook of Optics: Optical Properties of Materials, Nonlinear Optics, Quantum Optics, 3rd ed. (McGraw-Hill, 2009). 17. M. J. Dodge, “Refractive properties of magnesium fluoride,” Appl. Opt. 23, 1980–1985 (1984). 18. P. D. Hale and G. W. Day, “Stability of birefringent linear retarders (wave plates),” Appl. Opt. 27, 5146–5153 (1988).
dc.identifier.doi10.1364/AO.52.001892
dc.identifier.issn1559-128X
dc.identifier.officialurlhttp://dx.doi.org/10.1364/AO.52.001892
dc.identifier.relatedurlhttp://www.opticsinfobase.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/33596
dc.issue.number9
dc.journal.titleApplied Optics
dc.language.isoeng
dc.page.final1896
dc.page.initial1892
dc.publisherThe Optical Society Of America
dc.relation.projectIDPhotonic Transceiver for Secure Communications Space
dc.relation.projectIDDPI2011-27851
dc.rights.accessRightsopen access
dc.subject.cdu535
dc.subject.keywordLinear Retarders
dc.subject.keywordQuartz
dc.subject.ucmÓptica (Física)
dc.subject.unesco2209.19 Óptica Física
dc.titleOptimal achromatic wave retarders using two birefringent wave plates
dc.typejournal article
dc.volume.number52
dspace.entity.typePublication
relation.isAuthorOfPublication72f8db7f-8a25-4d15-9162-486b0f884481
relation.isAuthorOfPublication.latestForDiscovery72f8db7f-8a25-4d15-9162-486b0f884481
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Bernabeu,E06libre.pdf
Size:
192.92 KB
Format:
Adobe Portable Document Format
Collections