Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Spatial patterns of ground heat gain in the Northern Hemisphere

dc.contributor.authorBeltrami, Hugo
dc.contributor.authorBourlon, Evelise
dc.contributor.authorKellman, Lisa
dc.contributor.authorGonzález Rouco, Jesús Fidel
dc.date.accessioned2023-06-20T11:12:31Z
dc.date.available2023-06-20T11:12:31Z
dc.date.issued2006-03-30
dc.descriptionCopyright 2006 by the American Geophysical Union. This research was funded by in Canada by NSERC, CFCAS, AIF, and project REN2002-04584-C04-04CLI and CGL2005-06097 of the Spanish MEC. B. Quinn helped us at the early stages of this work. We thank R. N. Harris and an anonymous reviewer helpful comments.
dc.description.abstractVariations in the Earth's surface energy balance are recorded in the subsurface as perturbations of the steady state thermal field. Here we invert 558 temperature-depth profiles in the Northern Hemisphere (NH), in order to estimate the energy balance history at the continental surface from heat flux anomalies in the subsurface. The heat gain is spatially variable and does not appear to have been persistent for the last 200 years at all locations, but overall continental areas have absorbed energy in the last 50 years. Results indicate a mean surface heat flux of 20.6 mWm^-2 over the last 200 years. The total heat absorbed by the ground is 4.8 x 10^21 J and 13.3 x 10^2 J for the last 50 and 200 years respectively. We suggest that our results may be useful for state-of-the-art General Circulation Model (GCM) validation and for land-surface coupling schemes.
dc.description.departmentDepto. de Física de la Tierra y Astrofísica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipNatural Sciences and Engineering Research Council of Canada (NSERC), Canadá
dc.description.sponsorshipCanadian Foundation for Climate and Atmospheric Sciences (CFCAS)
dc.description.sponsorshipAtlantic Innovation Fund (AIF), Canadá
dc.description.sponsorshipMinisterio de Educación y Ciencia (MEC), España
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/36542
dc.identifier.doi10.1029/2006GL025676
dc.identifier.issn0094-8276
dc.identifier.officialurlhttp://dx.doi.org/10.1029/2006GL025676
dc.identifier.relatedurlhttp://onlinelibrary.wiley.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/51830
dc.issue.number6
dc.journal.titleGeophysical research letters
dc.language.isoeng
dc.publisherAmerican Geophysical Union
dc.relation.projectIDREN2002-04584-C04-04CLI
dc.relation.projectIDCGL2005-06097
dc.rights.accessRightsopen access
dc.subject.cdu52
dc.subject.keywordSurface-temperature reconstructions
dc.subject.keywordLast 1000 years
dc.subject.keywordAir-temperature
dc.subject.keywordBorehole temperatures
dc.subject.keywordClimate system
dc.subject.keywordArt.
dc.subject.keywordSimulation
dc.subject.keywordInversion
dc.subject.keywordModels
dc.subject.keywordTrends
dc.subject.ucmAstrofísica
dc.subject.ucmAstronomía (Física)
dc.titleSpatial patterns of ground heat gain in the Northern Hemisphere
dc.typejournal article
dc.volume.number33
dcterms.referencesBeltrami, H. (2001), Surface heat flux histories from inversion of geothermal data: Energy balance at the Earth’s surface, J. Geophys. Res., 106, 21,979 – 21,994. Beltrami, H. (2002), Climate from borehole data: Energy fluxes and temperatures since 1500, Geophys. Res. Lett., 29(23), 2111, doi:10.1029/2002GL015702. Beltrami, H., and E. Bourlon (2004), Ground warming patterns in the NH during the last five centuries, Earth Planet. Sci. Lett., 227, 169 – 177. Beltrami, H., L. Cheng, and J. C. Mareschal (1997), Simultaneous inversion of BT data for past climate determination, Geophys. J. Int., 129, 311 – 318. Beltrami, H., J. Smerdon, H. N. Pollack, and S. Huang (2002), Continental heat gain in the global climate system, Geophys. Res. Lett., 29(8), 1167, doi:10.1029/2001GL014310. Beltrami, H., G. Ferguson, and R. N. Harris (2005), Long-term tracking of climate change by underground temperatures, Geophys. Res. Lett., 32, L19707, doi:10.1029/2005GL023714. Briffa, K. R., and T. J. Osborn (2002), Blowing hot and cold, Science, 295, 2227 – 2228. Chapman, D. S., M. G. Bartlett, and R. N. Harris (2004), Comment on ‘‘Ground vs. surface air temperature trends: Implications for borehole surface temperature reconstructions’’ by M. E. Mann and G. Schmidt, Geophys. Res. Lett., 31, L07205, doi:10.1029/2003GL019054. Delworth, T. L., and T. R. Knutson (2000), Simulation of early 20th century global warming, Science, 287, 2246 – 2250. Esper, J., E. R. Cook, and F. H. Schweingruberg (2002), Low-frequency signals in long tree-ring chronologies for reconstructing past temperature variability, Science, 295, 2250 – 2253. Esper, J., D. C. Frank, and R. J. S. Wilson (2004), Climate reconstructions: Low-frequency ambition and high-frequency ratification, Eos Trans. American Geophysical Union, 85(12), 113, 120. González Rouco, J. F., H. von Storch, and E. Zorita (2003), Deep soil temperature as proxy for surface air-temperature in a coupled model simulation of the last thousand years, Geophys. Res. Lett., 30(21), 2116, doi:10.1029/2003GL018264. González Rouco, H., J. F. Beltrami, E. Zorita, and H. von Storch (2006), Simulation and inversion of BT profiles in simulated climates: Spatial distribution and surface coupling, Geophys. Res. Lett., 33, L01703, doi:10.1029/2005GL024693. Hansen, J., et al. (2005), Earth’s energy imbalance: Confirmation and implications, Science, 308, 1431 – 1435. Harris, R. N., and D. S. Chapman (2001), Mid latitude (30– 60N) climatic warming inferred by combining BT with surface air temperature, Geophys. Res. Lett., 28, 747 – 750. Harris, R. N., and D. S. Chapman (2005), Borehole temperatures and tree rings: Seasonality and estimates of extratropical Northern Hemispheric warming, J. Geophys. Res., 110, F04003, doi:10.1029/2005JF000303. Hu, Q., and S. Feng (2005), How have soil temperatures been affected by the surface temperature and precipitation in the Eurasian continent?, Geophys. Res. Lett., 32, L14711, doi:10.1029/2005GL023469. Intergovernmental Panel on Climate Change (IPCC) (2001), Climate Change 2001: The Scientific Basis, edited by J. Houghton et al., 881 pp., Cambridge Univ. Press, New York. Jones, P. D., and M. Mann (2004), Climate over past millennia, Rev. Geophys., 42, RG2002, doi:10.1029/2003RG000143. Koster, R. D., and M. J. Suárez (1992), Modeling the land surface boundary in climate models as a composite of independent vegetation stands, J. Geophys. Res., 97, 2697 – 2715. Levitus, S., J. Antonov, J. Wang, T. L. Delworth, K. Dixon, and A. Broccoli (2001), Anthropogenic warming of the Earth’s climate system, Science, 292, 267 – 270. Levitus, S., J. Antonov, and T. Boyer (2005), Warming of the world ocean, 1955 – 2003, Geophys. Res. Lett., 32, L02604, doi:10.1029/2004GL021592. Pollack, H. N., and S. Huang (2000), Climate reconstructions from subsurface temperatures, Annu. Rev. Earth Planet. Sci., 28, 339 – 365. Pollack, H. N., and J. E. Smerdon (2004), Borehole climate reconstructions: Spatial structure and hemispheric averages, J. Geophys. Res., 109, D11106, doi:10.1029/2003JD004163. Mann, M. E., and G. A. Schmidt (2003), Ground vs. surface air temperature trends: Implications for borehole surface temperature reconstructions, Geophys. Res. Lett., 30(12), 1607, doi:10.1029/2003GL017170. Mann, M. E., S. Rutherford, R. S. Bradley, M. K. Hughes, and F. T. Keiming (2003), Optimal surface temperature reconstructions using terrestrial borehole data, J. Geophys. Res., 108(D7), 4203, doi:10.1029/2002JD002532. Moberg, A., D. M. Sonechkin, K. Holmgren, N. M. Datsenko, and W. Karlen (2005), Highly variable NH temperatures reconstructed from low- and high- resolution proxy data, Nature, 433, 613 – 617. Nitoiu, D., and H. Beltrami (2005), Subsurface thermal effects of land use changes, J. Geophys. Res., 110, F01005, doi:10.1029/2004JF000151. Sellers, P. J. (1995), Biophysical models of land surface processes, Climate System Models, edited by K. E. Trenberth, pp. 451 – 490, Cambridge Univ. Press, New York. Smith, W. H. F., and P. Wessel (1990), Gridding with continuous curvature splines in tension, Geophysics, 55, 293 – 305. Takayabu, I., K. Takata, T. Yamazaki, K. Ueno, H. Yabuki, and S. Haginoya (2001), Comparison of the four land surface models driven by a common forcing data prepared from GAME/Tibet POP97 snow accumulation and soil freezing processes, J. Meteorol. Soc. Jpn., 79, 535 – 554. Zorita, E., J. F. González Rouco, H. von Storch, J. P. Montávez, and F. Valero (2005), Natural and anthropogenic modes of surface temperature variations in the last thousand years, Geophys. Res. Lett., 32, L08707, doi:10.1029/2004GL021563.
dspace.entity.typePublication
relation.isAuthorOfPublicationb0dda0f2-5a69-45d6-8aec-ccc99f2dc468
relation.isAuthorOfPublication.latestForDiscoveryb0dda0f2-5a69-45d6-8aec-ccc99f2dc468

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
gonzalezrouco37libre.pdf
Size:
1.49 MB
Format:
Adobe Portable Document Format

Collections