Minimum Topological Genus Of Compact Bordered Klein Surfaces Admitting A Prime-Power

dc.contributor.authorGamboa Mutuberria, José Manuel
dc.contributor.authorBujalance, E.
dc.contributor.authorMaclachlan, C.
dc.date.accessioned2023-06-20T16:52:09Z
dc.date.available2023-06-20T16:52:09Z
dc.date.issued1995
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipDGICYT PB 92-0716;CEE-CHRX-CT93-0408;DGICTY PB 92-0498-0498-C02-02
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/15345
dc.identifier.doi10.1017/S0017089500031128
dc.identifier.issn0017-0895
dc.identifier.officialurlhttp://journals.cambridge.org/download.php?file=%2FGMJ%2FGMJ37_02%2FS0017089500031128a.pdf&code=cb81c363c
dc.identifier.relatedurlhttp://www.cambridge.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57277
dc.issue.number2
dc.journal.titleGlasgow Mathematical Journal
dc.language.isoeng
dc.page.final232
dc.page.initial221
dc.publisherOxford Univ Press United Kingdom
dc.rights.accessRightsrestricted access
dc.subject.cdu515.178, 517.547.58
dc.subject.keywordKlein Surface
dc.subject.keywordNon-Euclidean Crystallographic Groups
dc.subject.ucmFunciones (Matemáticas)
dc.subject.unesco1202 Análisis y Análisis Funcional
dc.titleMinimum Topological Genus Of Compact Bordered Klein Surfaces Admitting A Prime-Power
dc.typejournal article
dc.volume.number37
dcterms.referencesN. L. Ailing and N. Greenleaf, Foundations of the theory of Klein surfaces . Lecture Notes in Mathematics No 219 (Springer-Verlag, 1971). E. Bujalance, Cyclic groups of automorphisms of compact non-orientable surfaces without boundary. Pacific J. Math. 109 (1983), 279-289. E. Bujalance, J. J. Etayo, j . M. Gamboa and G. Martens, Minimal genus of Klein surfaces admitting an automorphism of given order. Arch. Math. 52 (1989) 191-202. E. Bujalance, J. J. Etayo, J. M. Gamboa and G. Gromadzki, Automorphism Groups of Compact Bordered Klein Surfaces. A combinatorial approach. Lecture Notes in Mathematics No 1439 (Springer-Verlag, 1990). G. Gromadzki, Abelian groups of automorphisms of compact non-orientable Klein surfaces without boundary, Commentationes Math. 28 (1989), 197-217. W. Hall, Automorphisms and coverings of Klein surfaces. Ph.D. Thesis, Southampton University (1977). W. J. Harvey, Cyclic groups of automorphisms of a compact Riemann surface. Quart. J. Math. Oxford (2) 17 (1966), 86-97. A. Hurwitz, Uber algebraische Gebilde mit eindeutigen Transformationen in sich, Math. Ann. 41 (1893), 402-442. R. S. Kulkarni and C. Maclachlan, Cyclic p -groups of symmetries of surfaces. Glasgow Math. J. 33 (1991), 213-221. C. Maclachlan, Abelian groups of automorphisms of compact Riemann surfaces, Proc. London Math. Soc. 15 (1965), 600-712. C. L. May, Automorphisms of compact Klein surfaces with boundary, Pacific J. Math. 59 (1975), 199-210. C. L. May, Cyclic automorphism groups of compact bordered Klein surfaces, Houston J. Math. 3 (1977), 395-405. D. McCullough, Minimal genus of abelian actions on Klein surfaces with boundary, Math. Zeit. 205 (1990), 421-436. A. Wiman, Uber die hyperelliptischen Kurven und diejenigen von Geschlechte p = 3, welche eideutigen Trasformationen in sich zulassen. Bihang Kongl. Svenska Vetenskaps-Akademiens Handlingar (Stockholm, 1895-96).
dspace.entity.typePublication
relation.isAuthorOfPublication8fcb811a-8d76-49a2-af34-85951d7f3fa5
relation.isAuthorOfPublication.latestForDiscovery8fcb811a-8d76-49a2-af34-85951d7f3fa5

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
23.pdf
Size:
581.22 KB
Format:
Adobe Portable Document Format

Collections