Minimum Topological Genus Of Compact Bordered Klein Surfaces Admitting A Prime-Power
dc.contributor.author | Gamboa Mutuberria, José Manuel | |
dc.contributor.author | Bujalance, E. | |
dc.contributor.author | Maclachlan, C. | |
dc.date.accessioned | 2023-06-20T16:52:09Z | |
dc.date.available | 2023-06-20T16:52:09Z | |
dc.date.issued | 1995 | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | DGICYT PB 92-0716;CEE-CHRX-CT93-0408;DGICTY PB 92-0498-0498-C02-02 | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/15345 | |
dc.identifier.doi | 10.1017/S0017089500031128 | |
dc.identifier.issn | 0017-0895 | |
dc.identifier.officialurl | http://journals.cambridge.org/download.php?file=%2FGMJ%2FGMJ37_02%2FS0017089500031128a.pdf&code=cb81c363c | |
dc.identifier.relatedurl | http://www.cambridge.org | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/57277 | |
dc.issue.number | 2 | |
dc.journal.title | Glasgow Mathematical Journal | |
dc.language.iso | eng | |
dc.page.final | 232 | |
dc.page.initial | 221 | |
dc.publisher | Oxford Univ Press United Kingdom | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 515.178, 517.547.58 | |
dc.subject.keyword | Klein Surface | |
dc.subject.keyword | Non-Euclidean Crystallographic Groups | |
dc.subject.ucm | Funciones (Matemáticas) | |
dc.subject.unesco | 1202 Análisis y Análisis Funcional | |
dc.title | Minimum Topological Genus Of Compact Bordered Klein Surfaces Admitting A Prime-Power | |
dc.type | journal article | |
dc.volume.number | 37 | |
dcterms.references | N. L. Ailing and N. Greenleaf, Foundations of the theory of Klein surfaces . Lecture Notes in Mathematics No 219 (Springer-Verlag, 1971). E. Bujalance, Cyclic groups of automorphisms of compact non-orientable surfaces without boundary. Pacific J. Math. 109 (1983), 279-289. E. Bujalance, J. J. Etayo, j . M. Gamboa and G. Martens, Minimal genus of Klein surfaces admitting an automorphism of given order. Arch. Math. 52 (1989) 191-202. E. Bujalance, J. J. Etayo, J. M. Gamboa and G. Gromadzki, Automorphism Groups of Compact Bordered Klein Surfaces. A combinatorial approach. Lecture Notes in Mathematics No 1439 (Springer-Verlag, 1990). G. Gromadzki, Abelian groups of automorphisms of compact non-orientable Klein surfaces without boundary, Commentationes Math. 28 (1989), 197-217. W. Hall, Automorphisms and coverings of Klein surfaces. Ph.D. Thesis, Southampton University (1977). W. J. Harvey, Cyclic groups of automorphisms of a compact Riemann surface. Quart. J. Math. Oxford (2) 17 (1966), 86-97. A. Hurwitz, Uber algebraische Gebilde mit eindeutigen Transformationen in sich, Math. Ann. 41 (1893), 402-442. R. S. Kulkarni and C. Maclachlan, Cyclic p -groups of symmetries of surfaces. Glasgow Math. J. 33 (1991), 213-221. C. Maclachlan, Abelian groups of automorphisms of compact Riemann surfaces, Proc. London Math. Soc. 15 (1965), 600-712. C. L. May, Automorphisms of compact Klein surfaces with boundary, Pacific J. Math. 59 (1975), 199-210. C. L. May, Cyclic automorphism groups of compact bordered Klein surfaces, Houston J. Math. 3 (1977), 395-405. D. McCullough, Minimal genus of abelian actions on Klein surfaces with boundary, Math. Zeit. 205 (1990), 421-436. A. Wiman, Uber die hyperelliptischen Kurven und diejenigen von Geschlechte p = 3, welche eideutigen Trasformationen in sich zulassen. Bihang Kongl. Svenska Vetenskaps-Akademiens Handlingar (Stockholm, 1895-96). | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 8fcb811a-8d76-49a2-af34-85951d7f3fa5 | |
relation.isAuthorOfPublication.latestForDiscovery | 8fcb811a-8d76-49a2-af34-85951d7f3fa5 |
Download
Original bundle
1 - 1 of 1