The controlled transition-metal doping of SnO_2 nanoparticles with tunable luminescence

dc.contributor.authorPeche Herrero, M. A.
dc.contributor.authorMaestre Varea, David
dc.contributor.authorRamirez Castellanos, J.
dc.contributor.authorCremades Rodríguez, Ana Isabel
dc.contributor.authorPiqueras de Noriega, Javier
dc.contributor.authorGonzález Calvet, J. M.
dc.date.accessioned2023-06-19T13:24:09Z
dc.date.available2023-06-19T13:24:09Z
dc.date.issued2014
dc.description© RSC Royal Society of Chemistry. This work was supported by MEC (MAT2012-39159 and Consolider CSD 2009-00013). The authors are grateful to the National Centre for Electron Microscopy (CNME) at Universidad Complutense de Madrid.
dc.description.abstractSnO_2 nanoparticles doped with transition metals (V, Cr, Mn) have been synthesized by both the hydrothermal method (HDT) in a basic media and the liquid mixed method (LQM) based on the Pechini method. Nanocrystalline particles obtained via a liquid mixed technique show a well-defined chemical composition and an average size of 6 nm, with a high degree of both crystallinity and chemical homogeneity. Nanoparticles prepared via a hydrothermal method exhibit a high dispersion in size as well as agglomeration effects. As the LQM demonstrates advantages with respect to the HDT, a more detailed investigation has been carried out on the SnO_2 nanoparticles doped with V, Cr and Mn grown by this method. The microstructure of the materials was elucidated by means of X-ray Diffraction (XRD), Selected-Area Electron Diffraction (SAED), and High-Resolution Transmission Electron Microscopy (HRTEM). Luminescence from undoped and doped SnO_2 nanoparticles was characterized by cathodoluminescence (CL). The luminescence studies demonstrate a strong dependence of CL signals with transition metal doping, thus inducing red, green or orange emissions when doping with Cr, V or Mn respectively.
dc.description.departmentDepto. de Física de Materiales
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMEC
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/25626
dc.identifier.doi10.1039/c3ce42188k
dc.identifier.issn1466-8033
dc.identifier.officialurlhttp://dx.doi.org/10.1039/c3ce42188k
dc.identifier.relatedurlhttp://pubs.rsc.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/33550
dc.issue.number14
dc.journal.titleCrystEngComm
dc.page.final2976
dc.page.initial2969
dc.publisherRSC Royal Society of Chemistry
dc.relation.projectIDMAT2012-39159,
dc.relation.projectIDConsolider CSD 2009-00013
dc.rights.accessRightsmetadata only access
dc.subject.cdu538.9
dc.subject.keywordDiluted Magnetic Semiconductor
dc.subject.keywordSol-Gel Method
dc.subject.keywordTin Oxide
dc.subject.keywordRoom-Temperature
dc.subject.keywordHydrothermal Synthesis
dc.subject.keywordNanocrystals
dc.subject.keywordGrowth
dc.subject.keywordMicrostructure
dc.subject.keywordFerromagnetism
dc.subject.keywordNanowires
dc.subject.ucmFísica de materiales
dc.titleThe controlled transition-metal doping of SnO_2 nanoparticles with tunable luminescence
dc.typejournal article
dc.volume.number16
dspace.entity.typePublication
relation.isAuthorOfPublication43cbf291-2f80-4902-8837-ea2a9ffaa702
relation.isAuthorOfPublicationda0d631e-edbf-434e-8bfd-d31fb2921840
relation.isAuthorOfPublication.latestForDiscovery43cbf291-2f80-4902-8837-ea2a9ffaa702
Download
Collections