Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Experimental determination of the streaming potential across cation-exchange membranes with different morphologies

dc.contributor.authorGarcía Villaluenga, Juan Pedro
dc.contributor.authorSomovilla, Pilar
dc.contributor.authorBarragán García, Vicenta María
dc.contributor.authorIzquierdo Gil, María Amparo
dc.date.accessioned2023-06-18T06:49:14Z
dc.date.available2023-06-18T06:49:14Z
dc.date.issued2016
dc.description© 2016 Journal of Membrane Science. The author would like to thank the anonymous reviewers for their valuable comments and suggestions to improve the quality of the paper. Financial support of this work by Banco de Santander and Universidad Complutense de Madrid within the framework of Project PR6/13-18853 is gratefully acknowledged.
dc.description.abstractLiquid uptake and streaming potential have been determined in aqueous sodium chloride solutions for five different commercial sulfonated polymer cation-exchange membranes. The selected membranes have distinct morphologies and electrochemical properties. Differences in the liquid uptake properties of the membranes have been found, which have been analysed on the basis of the structure and the chemical properties of the membranes. In most of the membranes analyzed, the higher the liquid content of the membranes, the lower the effective concentration of fixed charges in the membranes. The streaming potential across the membranes increases linearly with the established pressure difference, and it is larger in heterogeneous membranes than in homogeneous ones. In general, the higher the membrane liquid content, the higher the streaming potential across the membranes.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipBanco Santander/ Universidad Complutense de Madrid
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/35068
dc.identifier.doi10.1016/j.memsci.2015.11.030
dc.identifier.issn0376-7388
dc.identifier.officialurlhttp://dx.doi.org/10.1016/j.memsci.2015.11.030
dc.identifier.relatedurlhttp://www.sciencedirect.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/24300
dc.issue.number500
dc.journal.titleJournal of Membrane Science
dc.language.isoeng
dc.page.final24
dc.page.initial16
dc.publisherElsevier
dc.relation.projectIDPR6/13-18853
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subject.cdu536
dc.subject.keywordElectro-kinetic phenomena
dc.subject.keywordNon-equilibrium thermodynamics
dc.subject.keywordCation-exchange membranes
dc.subject.ucmFísica (Física)
dc.subject.ucmTermodinámica
dc.subject.unesco22 Física
dc.subject.unesco2213 Termodinámica
dc.titleExperimental determination of the streaming potential across cation-exchange membranes with different morphologies
dc.typejournal article
dcterms.references[1] R.P. Rastogi, R.C. Srivastava, S.N. Singh, Nonequilibrium thermodynamics of electrokinetic phenomena, Chem. Rev. 93 (1993) 1945–1990. [2] V.M. Barragán, C. Ruiz-Bauzá, J.L. Imaña, Streaming potential across cationexchange membranes in methanol–water electrolyte solutions, J. Colloid Interface Sci. 294 (2006) 473–481. [3] T. Okada, S. Kjelstrup Ratkje, H. Hanche-Olsen, Water transport in cation exchange membranes, J. Membr. Sci. 66 (1992) 179–192. [4] K.S. Spiegler, On the measurement of streaming potential with silver–silver chloride electrodes, Desalination 15 (1974) 135–140. [5] Y.S. Li, T.S. Zhao, W.W. Yang, Measurements of water uptake and transport properties in anion-exchange membranes, Int. J. Hydrogen Energy 35 (2010) 5656–5665. [6] V.M. Barragán, C. Ruiz-Bauzá, J.P.G. Villaluenga, B. Seoane, On the methanol– water electroosmotic transport in a Nafion membrane, J. Membr. Sci. 236 (2004) 109–120. [7] C. Larchet, B. Auclair, V. Nikonenko, Approximate evaluation of water transport number in ion-exchange membranes, Electrochim. Acta 49 (2004) 1711–1717. [8] J.P.G. Villaluenga, V.M. Barragán, M.A. Izquierdo-Gil, M.P. Godino, B. Seoane, C. Ruiz-Bauzá, Comparative study of liquid uptake and permeation characteristics of sulfonated cation-exchange membranes in water and methanol, J. Membr. Sci. 323 (2008) 421–427. [9] D. Nandan, H. Mohan, R.M. Iyer, Methanol and water uptake, densities, equivalental volumes and thicknesses of several uni- and divalent ionic perfluorosulphonate exchange membranes (Nafion 117) and their methanol– water fractionation behavior at 298 K, J. Membr. Sci. 71 (1992) 69–80. [10] K.A. Mauritz, R.B. Moore, State of understanding of Nafion, Chem. Rev. 104 (2004) 4535–4586. [11] E. Güler, R. Elizen, D.A. Vermaas, M. Saakes, K. Nijmeijer, Performance-determining membrane properties in reverse electrodialysis, J. Membr. Sci. 446 (2013) 266–276. [12] J.-H. Choi, S.-H. Moon, Pore size characterization of cation-exchange membranes by chronopotentiometry using homologous amine ions, J. Membr. Sci. 191 (2001) 225–236. [13] P. Długołecki, B. Anet, S.J. Metz, K. Nijmeijer, M. Wessling, Transport limitations in ion exchange membranes at low salt concentrations, J. Membr. Sci. 346 (2010) 163–171. [14] V.M. Barragán, M.J. Pérez-Haro, Correlations between water uptake and effective fixed charge concentration at high univalent electrolyte concentrations in sulfonated polymer cation-exchange membranes with different morphologies, Electrochim. Acta 56 (2011) 8630–8637. [15] D. García-Nieto, V.M. Barragán, A comparative study of the electro-osmotic behavior of cation and anion exchange membranes in alcohol–water media, Electrochim. Acta 154 (2015) 166–176. [16] M.H.V. Mulder, Thermodynamic principles of pervaporation, in: R.Y.M. Huang (Ed.), Pervaporation Membrane Separation Processes, Elsevier, Amsterdam, The Netherlands, 1991. [17] V.M.M. Lobo, Electrolyte Solutions: Literature Data on Thermodynamics and Transport Properties, Coimbra (Ed.), Coimbra, 1975. [18] F.G. Helfferich, Ion Exchange, Dover, New York, 1995. [19] A. Lehmani, P. Turq, M. Périé, J. Périé, J.-P. Simonin, Ion transport in Nafion 117 membrane, J. Electroanal. Chem. 428 (1997) 81–89. [20] E.D. Belashova, N.A. Melnik, N.D. Pismenskaya, K.A. Shevtsova, A.V. Nebvausky, K.A. Ledeveu, V.V. Nikonenko, Electrochim. Acta 59 (2012) 412–423. [21] B. Piluharto, V. Suendo, T. Ciptati, C.L. Radiman, Strong correlation between membrane effective fixed charge and proton conductivity in the sulfonated polysulfone cation-exchange membranes, Ionics 17 (2011) 229–238. [22] M.A. Islam, N.D. Nikolov, J.D. Nikolova, An electrical model for the relaxation of streaming potential across a charged membrane, J. Membr. Sci. 84 (1993) 29–36. [23] V.M. Barragán, C. Ruiz-Bauzá, Streaming potential and hydraulic permeation through cation-exchange membranes, J. Non-Equilib. Thermodyn. 22 (1997) 374–385. [24] B.S. Kilsgaard, S. Haldrup, J. Catalano, A. Bentien, High figure of merit for electrokinetic energy conversion in Nafion, J. Power Sources 247 (2014) 235–242. [25] V.M. Barragán, E. Pastuschuk, Viscoelastic deformation of sulfonated polymeric cation-exchange membranes exposed to a pressure gradient, Mater. Chem. Phys. 146 (2014) 65–72. [26] V.M. Barragán, J.P.G. Villaluenga, M.P. Godino, M.A. Izquierdo-Gil, C. RuizBauzá, B. Seoane, Swelling and electro-osmotic properties of catión-exchange membranes with different structures in methanol–water media, J. Power Sources 185 (2008) 822–827. [27] J.M. Reynard, C. Larchet, G. Bulvestre, B. Auclair, Determination of the streaming potential in ion-exchange membranes, J. Membr. Sci. 67 (1992) 57–66. [28] T. Yamanaka, T. Takeguchi, H. Takahashi, W. Ueda, Water transport during ion conduction in anion-exchange and cation-exchange membranes, J. Electrochem. Soc. 156 (2009) 13831–13835. [29] N.P. Berezina, N.A. Kononenko, O.A. Dyomina, N.P. Gnusin, Characterization of ion-exchange membrane materials: properties vs. structure, Adv. Colloid Interface Sci. 139 (2008) 3–28. [30] B.E. Conway, Electrochemical Data, Greenwood Press, Westport, CT, 1969. [31] C. Larchet, S. Nouri, B. Auclair, L. Dammak, V. Nikonenko, Application of chronopotentiometry to determine the thickness of diffusion layer adjacent to an ion-exchange membrane under natural convection, Adv. Colloid Interface Sci. 139 (2008) 45–61. [32] V.M. Barragán, J.P.G. Villaluenga, M.P. Godino, M.A. Izquierdo-Gil, C. RuizBauzá, B. Seoane, Experimental estimation of equilibrium and transport properties of sulfonated cation-exchange membranes with different morphologies, J. Colloid Interface Sci. 333 (2009) 497–507. [33] J.P.G. Villaluenga, B. Seoane, V.M. Barragán, C. Ruiz-Bauzá, Permeation of electrolyte water–methanol solutions through a Nafion membrane, J. Colloid Interface Sci. 268 (2003) 476–481. [34] J.P.G. Villaluenga, V.M. Barragán, B. Seoane, C. Ruiz-Bauzá, Sorption and permeation of solutions of chloride salts, water and methanol in a Nafion membrane, Electrochim. Acta 51 (2006) 6297–6303. [35] S. Koter, The equivalent pore radius of charged membranes from electroosmotic flow, J. Membr. Sci. 166 (2000) 127–135. [36] S. Koter, W. Kujawski, I. Koter, Importance of the cross-effects in the transport through ion-exchange membranes, J. Membr. Sci. 297 (2007) 226–235. [37] P.W. Majsztrik, M.B. Satterfield, A.B. Bocarsly, J.B. Benzinger, Water sorption, desorption and transport in Nafion membranes, J. Membr. Sci. 301 (2007) 93–106.
dspace.entity.typePublication
relation.isAuthorOfPublication767d7957-0d58-4121-ab42-43d9165389a9
relation.isAuthorOfPublicationd2c307ae-39ce-419e-a520-2e71b0d84e09
relation.isAuthorOfPublication7577a695-65ee-44e1-b7aa-8945ac183fb5
relation.isAuthorOfPublication.latestForDiscovery767d7957-0d58-4121-ab42-43d9165389a9

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ViewPageProof_MEMSCI_14123.pdf
Size:
1.18 MB
Format:
Adobe Portable Document Format

Collections