Whitney extension theorems for convex functions of the classes C1 and C1ω

dc.contributor.authorAzagra Rueda, Daniel
dc.contributor.authorMudarra, C.
dc.date.accessioned2023-06-17T21:59:47Z
dc.date.available2023-06-17T21:59:47Z
dc.date.issued2017
dc.description[final page numbers not yet available]
dc.description.abstractLet C be a subset of ℝn (not necessarily convex), f : C → R be a function and G : C → ℝn be a uniformly continuous function, with modulus of continuity ω. We provide a necessary and sufficient condition on f, G for the existence of a convex function F ∈ CC1ω(ℝn) such that F = f on C and ∇F = G on C, with a good control of the modulus of continuity of ∇F in terms of that of G. On the other hand, assuming that C is compact, we also solve a similar problem for the class of C1 convex functions on ℝn, with a good control of the Lipschitz constants of the extensions (namely, Lip(F) ≲ ∥G∥∞). Finally, we give a geometrical application concerning interpolation of compact subsets K of ℝn by boundaries of C1 or C1,1 convex bodies with prescribed outer normals on K.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/43806
dc.identifier.doi10.1112/plms.12006
dc.identifier.issn0024-6115
dc.identifier.officialurlhttp://onlinelibrary.wiley.com/doi/10.1112/plms.12006/full
dc.identifier.relatedurlhttp://onlinelibrary.wiley.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/17907
dc.issue.number1
dc.journal.titleProceedings of the London Mathematical Society
dc.language.isoeng
dc.page.final158
dc.page.initial133
dc.publisherOxford University Press (OUP)
dc.relation.projectIDMTM2012-34341
dc.rights.accessRightsrestricted access
dc.subject.cdu514.14
dc.subject.ucmGeometría diferencial
dc.subject.unesco1204.04 Geometría Diferencial
dc.titleWhitney extension theorems for convex functions of the classes C1 and C1ω
dc.typejournal article
dc.volume.number114
dspace.entity.typePublication
relation.isAuthorOfPublication6696556b-dc2e-4272-8f5f-fa6a7a2f5344
relation.isAuthorOfPublication.latestForDiscovery6696556b-dc2e-4272-8f5f-fa6a7a2f5344

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Azagra37.pdf
Size:
342.72 KB
Format:
Adobe Portable Document Format

Collections