Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Classification of Lie algebras with naturally graded quasi-filiform nilradicals

dc.contributor.authorAncochea Bermúdez, José María
dc.contributor.authorCampoamor Stursberg, Otto-Rudwig
dc.contributor.authorGarcía Vergnolle, Lucía
dc.date.accessioned2023-06-20T03:31:49Z
dc.date.available2023-06-20T03:31:49Z
dc.date.issued2011
dc.description.abstractThe whole class of complex Lie algebras g having a naturally graded nilradical with characteristic sequence c(g) = (dim g − 2, 1, 1) is classified. It is shown that up to one exception, such Lie algebras are solvable.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.facultyInstituto de Matemática Interdisciplinar (IMI)
dc.description.refereedTRUE
dc.description.sponsorshipMEC
dc.description.sponsorshipUCM-BSCH
dc.description.sponsorshipFundación Ramon Areces
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/20685
dc.identifier.doi10.1016/j.geomphys.2011.06.015
dc.identifier.issn0393-0440
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/S0393044011001604
dc.identifier.relatedurlhttp://www.sciencedirect.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/43734
dc.issue.number11
dc.journal.titleJournal of Geometry and Physics
dc.language.isoeng
dc.page.final2186
dc.page.initial2168
dc.publisherElsevier
dc.relation.projectIDMTM2006-09152
dc.relation.projectIDGR58/4120818-920920
dc.rights.accessRightsrestricted access
dc.subject.cdu512.81
dc.subject.keywordSolvable
dc.subject.keywordLie algebras
dc.subject.keywordExtensions
dc.subject.ucmÁlgebra
dc.subject.unesco1201 Álgebra
dc.titleClassification of Lie algebras with naturally graded quasi-filiform nilradicals
dc.typejournal article
dc.volume.number61
dcterms.referencesJ.M. Ancochea, M. Goze, Sur la classification des algèbres de Lie nilpotentes de dimension 7, C. R. Acad. Sci. 302 (1986) 611–613. R. Campoamor-Stursberg, Razreshimye algebry Li, zadannye proizvedeniem obrazuyushchikh i nekotorye ikh prilozheniya, Fundam. Prikl. Mat. 11 (2005) 85–94. M. Goto, Note on a characterization of solvable Lie algebras, J. Sci. Hiroshima Univ. Ser. A–I 26 (1962) 1–2. V.V. Morozov, Klassifikaciya nil’potentnykh algebr Lie shestovo poryadka, Izv. Vyssh. Uchebn. Zaved. Mat. 4 (1958) 161–171. G.M. Mubarakzyanov, Klassifikaciya razreshimykh algebr Lie shestovo poryadka s odnim nenilpotentym bazisnym elementom, Izv. Vyssh. Uchebn. Zaved. Mat. 35 (1963) 104–116. È.N. Safiullina, Voprosu o klassifikacii nil’potentnykh algebr Li sed’mogo poryadka, VINITI, 1976, pp. 1702–1776. P. Turkowski, Solvable Lie algebras of dimension six, J. Math. Phys. 31 (1990) 1344–1350. J. Patera, H. Zassenhaus, On Lie gradings. I, Linear Algebra Appl. 112 (1989) 87–159. M. Havlícek, J. Patera, E. Pelantova, On Lie gradings. II, Linear Algebra Appl. 277 (1998) 97–125. A. Nijenhuis, R.W. Richardson, Deformations of Lie algebra structures, J. Math. Mech. 17 (1967) 89–105. M. Vergne, Cohomologies des algèbres de Lie nilpotentes. Application à l’étude de la variété des algèbres de Lie nilpotentes, Bull. Soc. Math. France 98 (1970) 81–116. J.M. Ancochea, R. Campoamor-Stursberg, L. García Vergnolle, Solvable Lie algebras with naturally graded nilradicals and their invariants, J. Phys. A 39 (2006) 1339–1355. L. Šnobl, P. Winternitz, A class of solvable Lie algebras and their Casimir invariants, J. Phys. A 38 (2005) 2687–2700. J.R. Gómez, A. Jiménez-Merchán, Naturally graded quasi-filiform Lie algebras, J. Algebra 256 (2002) 221–228. L. García Vergnolle, Sur les algèbres de Lie quasi-iliformes admettant un tore de dérivations, Manuscripta Math. 124 (2007) 489–505. Y. Wang, J. Lin, S. Deng, Solvable Lie algebras with quasifiliform nilradicals, Comm. Algebra 36 (2008) 4052–4067. A.I. Mal’cev, Solvable Lie algebras, Izv. Akad. Nauk SSSR 9 (1945) 329–356. G.B. Mubarakzyanov, Nekotorye teoremy o razreshimykh algebrakh Li, Izv. Vyssh. Uchebn. Zaved. Mat. 55 (1966) 95–98. R. Campoamor-Stursberg, Some remarks concerning the invariants of rank one solvablereal Lie algebras, Algebra Colloq. 12 (2005) 497–518. A. Ballesteros, F.J. Herranz, A. Blasco, (Super) integrability from coalgebra symmetry: formalism and applications, J. Phys. Conf. Ser. 175 (2009) 012004 (16 pp).
dspace.entity.typePublication
relation.isAuthorOfPublication8afd7745-e428-4a77-b1ff-813045b673fd
relation.isAuthorOfPublication72801982-9f3c-4db0-b765-6e7b4aa2221b
relation.isAuthorOfPublication.latestForDiscovery8afd7745-e428-4a77-b1ff-813045b673fd

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Ancochea03.pdf
Size:
286.61 KB
Format:
Adobe Portable Document Format

Collections