Para depositar en Docta Complutense, identifícate con tu correo @ucm.es en el SSO institucional: Haz clic en el desplegable de INICIO DE SESIÓN situado en la parte superior derecha de la pantalla. Introduce tu correo electrónico y tu contraseña de la UCM y haz clic en el botón MI CUENTA UCM, no autenticación con contraseña.
 

On Polynomial Properties in Banach Spaces

dc.contributor.authorBombal Gordón, Fernando
dc.date.accessioned2023-06-20T18:41:15Z
dc.date.available2023-06-20T18:41:15Z
dc.date.issued1996
dc.description.abstractIn this paper some polynomial properties of Banach spaces are studied through the use of a general scheme referring to the relationship between different classes of subsets of a Banach space. More specifically, if G(E) is a class of subsets of E (bounded, weakly compact, limited …), a new class is defined on E by setting A∈GN(E) if θN(A)∈G(⨂E), where θN(x)=x⊗⋯⊗x and ⨂E is the N-fold symmetric projective tensor product of E. Thus, for example, just as E has the Dunford-Pettis property if W(E)⊂DP(E) (each relatively weakly compact set is a Dunford-Pettis set), it seems natural to define the N-Dunford-Pettis property (N-DPP) by WN(E)⊂DPN(E). Since every N-homogeneous polynomial on E can be written as T∘θN where T is a linear operator, it is possible in some instances to apply characterizations of the linear properties to the polynomial case. Thus, the following are proven to be equivalent: (1) E has the N-DPP. (2) For all F, each weakly compact N-homogeneous polynomial P:E→F sends sequences (xn) in E such that (θN(xn)) converges weakly, into norm convergent sequences. (3) Same as (2), but with F=c0. Other results are obtained for other polynomial properties.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/20042
dc.identifier.issn0041-8986
dc.identifier.urihttps://hdl.handle.net/20.500.14352/58306
dc.issue.number1
dc.journal.titleAtti del Seminario Matematico e Fisico dell'Università di Modena
dc.page.final146
dc.page.initial135
dc.publisherSeminario matematico e fisico
dc.rights.accessRightsmetadata only access
dc.subject.cdu517.982.22
dc.subject.keywordBanach spaces
dc.subject.ucmGeometría diferencial
dc.subject.unesco1204.04 Geometría Diferencial
dc.titleOn Polynomial Properties in Banach Spaces
dc.typejournal article
dc.volume.number44
dspace.entity.typePublication

Download

Collections