Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

On Polynomial Properties in Banach Spaces

dc.contributor.authorBombal Gordón, Fernando
dc.date.accessioned2023-06-20T18:41:15Z
dc.date.available2023-06-20T18:41:15Z
dc.date.issued1996
dc.description.abstractIn this paper some polynomial properties of Banach spaces are studied through the use of a general scheme referring to the relationship between different classes of subsets of a Banach space. More specifically, if G(E) is a class of subsets of E (bounded, weakly compact, limited …), a new class is defined on E by setting A∈GN(E) if θN(A)∈G(⨂E), where θN(x)=x⊗⋯⊗x and ⨂E is the N-fold symmetric projective tensor product of E. Thus, for example, just as E has the Dunford-Pettis property if W(E)⊂DP(E) (each relatively weakly compact set is a Dunford-Pettis set), it seems natural to define the N-Dunford-Pettis property (N-DPP) by WN(E)⊂DPN(E). Since every N-homogeneous polynomial on E can be written as T∘θN where T is a linear operator, it is possible in some instances to apply characterizations of the linear properties to the polynomial case. Thus, the following are proven to be equivalent: (1) E has the N-DPP. (2) For all F, each weakly compact N-homogeneous polynomial P:E→F sends sequences (xn) in E such that (θN(xn)) converges weakly, into norm convergent sequences. (3) Same as (2), but with F=c0. Other results are obtained for other polynomial properties.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/20042
dc.identifier.issn0041-8986
dc.identifier.urihttps://hdl.handle.net/20.500.14352/58306
dc.issue.number1
dc.journal.titleAtti del Seminario Matematico e Fisico dell'Università di Modena
dc.page.final146
dc.page.initial135
dc.publisherSeminario matematico e fisico
dc.rights.accessRightsmetadata only access
dc.subject.cdu517.982.22
dc.subject.keywordBanach spaces
dc.subject.ucmGeometría diferencial
dc.subject.unesco1204.04 Geometría Diferencial
dc.titleOn Polynomial Properties in Banach Spaces
dc.typejournal article
dc.volume.number44
dspace.entity.typePublication

Download

Collections