Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Monte Carlo simulation of microwave noise temperature in cooled GaAs and InP

dc.contributor.authorMiranda Pantoja, José Miguel
dc.contributor.authorSebastián Franco, José Luis
dc.date.accessioned2023-06-20T18:56:07Z
dc.date.available2023-06-20T18:56:07Z
dc.date.issued2000-07
dc.description© 2000 IEEE.
dc.description.abstractA simulation at microscopic level of the intrinsic microwave noise temperature associated to GaAs and InP semiconductors under far from equilibrium conditions has been performed. The dependence of the noise temperature on the electric field, doping level, and physical temperature has been investigated, and the results show the existence of threshold fields above which electron heating and partition noise due to intervalley scattering can make the cooling inefficient in terms of noise improvements. A comparison with available experimental data has also been made to verify the accuracy of the models used in the simulation.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/24774
dc.identifier.doi10.1109/22.853472
dc.identifier.issn0018-9480
dc.identifier.officialurlhttp://dx.doi.org/10.1109/22.853472
dc.identifier.relatedurlhttp://ieeexplore.ieee.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/58955
dc.issue.number7, P.2
dc.journal.titleIEEE Transactions on Microwave Theory and Techniques
dc.language.isoeng
dc.page.final1279
dc.page.initial1275
dc.publisherIEEE-Inst. Electrical Electronics Engineers Inc
dc.rights.accessRightsrestricted access
dc.subject.cdu537
dc.subject.keywordSchottky-Barrier Diodes
dc.subject.keywordHot-Electron Noise
dc.subject.keywordSemiconductors
dc.subject.keywordTransport
dc.subject.keywordSpectra
dc.subject.keywordMesfet.
dc.subject.ucmElectricidad
dc.subject.ucmElectrónica (Física)
dc.subject.unesco2202.03 Electricidad
dc.titleMonte Carlo simulation of microwave noise temperature in cooled GaAs and InP
dc.typejournal article
dc.volume.number48
dcterms.references[1] M. Trippe, G. Bosman, and A. Van Der Ziel, “Transit time effects in the noise of Schottky barrier diodes,” IEEE Trans. Microwave Theory Tech., vol. MTT-34, pp. 1183–1192, Nov. 1986. [2] A. Jelenski, E. Kollberg, and H. Zirath, “Broad band noise mechanisms and noise measurements of metal-semiconductor junctions,” IEEE Trans. Microwave Theory Tech., vol. MTT-34, pp. 1193–1201, Nov. 1986. [3] H. G. Zirath, S. M. Nielsen, H. Hjelmgren, L. P. Ramberg, and E. L.Kollberg, “Temperature variable noise characteristics of Au-GaAs Schottky barrier millimeter-wave mixer diodes,” IEEE Trans. Microwave Theory Tech., vol. 36, pp. 1469–1476, Nov. 1988. [4] A. Jelenski, A. Grüb, V. Krozer, and H. L. Hartnagel, “New approach to the design and the fabrication of THz Schottky barrier diodes,” IEEE Trans. Microwave Theory Tech., vol. 41, pp. 549–557, Apr. 1993. [5] M. W. Pospieszalski, “Modeling of noise parameters of MESFET’s and MODFET’s and their frequency and temperature dependence,” IEEE Trans. Microwave Theory Tech., vol. 37, pp. 1340–1350, Sept. 1989. [6] A. Cappy, “Noise modeling and measurement techniques,” IEEE Trans. Microwave Theory Tech., vol. 36, pp. 1–10, Jan. 1988. [7] A. Cappy, A. Vanoverschelde, M. Schortgen, C. Versnaeyen, and G. Salmer, “Noise modeling in submicrometer-gate two dimensional electron gas field effect transistor,” IEEE Trans. Electron Devices, vol. ED-32, pp. 2787–2795, Dec. 1985. [8] T. González, D. Pardo, L. Varani, and L. Reggiani, “A microscopic interpretation of hot-electron noise in Schottky barrier diodes,” Semiconduct. Sci. Technol., vol. 9, pp. 580–583, 1994. [9] , “Monte Carlo analysis of noise spectra in Schottky-barrier diodes,” Appl. Phys. Lett., vol. 63, no. 22, pp. 3040–3042, 1993. [10] E. Starikov, P. Shiktorov, V. Gruzinskis, L. Varani, J. C. Vaissiere, J. P. Nougier, and L. Reggiani, “Monte Carlo calculation of noise and smallsignal impedance spectra in submicrometer GaAs n nn diodes,” J. Appl. Phys., vol. 79, no. 1, pp. 242–252, 1996. [11] T. González, D. Pardo, L. Varani, and L. Reggiani, “Monte Carlo analysis of the behavior and spatial origin of electronic noise in GaAs MESFET’s,” IEEE Trans. Electron Devices, vol. 42, pp. 991–998, May 1995. [12] J. Mateos, T. González, D. Pardo, P. Tadyszak, F. Danneville, and A. Cappy, “Numerical and experimental analysis of the static characteristics and noise in ungated recessed MESFET structures,” Solid State Electron., vol. 39, no. 11, pp. 1629–1636, 1996. [13] J. M. M. Pantoja, J. L. Sebastián, and S. Muñoz, “Coupled maximum entropy—Monte Carlo estimation of microwave, mm-wave and sub mm-wave spectrum of velocity fluctuations in GaAs,” Appl. Phys. Lett., vol. 72, no. 2, pp. 238–240, 1998. [14] L. Varani, P. Houlet, J. C. Vaissiere, J. P. Nougier, E. Starikov, V. Gruzinskis, P. Shiktorov, L. Reggiani, and L. Hlou, “A model noise temperature for non linear transport in semiconductors,” J. Appl. Phys., vol. 80, no. 9, pp. 5067–5075, 1996. [15] A. van der Ziel, Noise in Solid State Devices and Circuits. New York: Wiley, 1986. [16] C. Jacoboni and P. Lugli, The Monte Carlo Method for Semiconductor Device Simulation. Berlin, Germany: Springer-Verlag, 1989. [17] E. Sangiorgi, B. Ricco, and F.Venturi, “MOS2: An efficient Monte Carlo simulator for MOS devices,” IEEE Trans. Computer-Aided Design, pp. 259–271, July 1988. [18] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in C: The Art of Scientific Computing, 2nd ed. Cambridge, U.K.: Cambridge Univ. Press, 1995. [19] J. M. Miranda, C. Lin, M. Shaalan, H. L. Hartnagel, and J. L. Sebastian, “Influence of the minimization of self-scattering events on the Monte Carlo simulation of carrier transport in III–V semiconductors,” Semiconduct. Sci. Technol., vol. 14, pp. 804–808, 1999. [20] J. S. Blakemore, “Semiconducting and other major properties of gallium arsenide,” J. Appl. Phys., vol. 53, no. 10, pp. R123–R179, 1982. [21] M. V. Fischetti, “Monte Carlo simulation of transport in technologically significant semiconductors of the diamond and zin–blende structures—Part I: Homogeneous transport,” IEEE Trans. Electron Devices, vol. 38, pp. 634–649, Mar. 1991. [22] T. Gonzalez, J. E. Velazquez, P. M. Gutierrez, and D. Pardo, “Electron transport in InP under high electric field conditions,” Semiconduct. Sci. Technol., vol. 7, pp. 31–36, 1992. [23] J. M. M. Pantoja and J. L. Sebastián, “Monte Carlo simulation of electron velocity in degenerate GaAs,” IEEE Trans. Electron Device Lett., vol. 18, pp. 258–260, June 1997. [24] M. Shur, Physics of Semiconductor Devices, ser. Solid-State Physical Electronics. Englewood Cliffs, NJ: Prentice-Hall, 1990. [25] V. Bareikis, J. Liberis, I. Matulionienè, A. Matulionis, and P. Sakalas, “Experiments on hot electron noise in semiconductor materials for highspeed devices,” IEEE Trans. Electron Devices, vol. 41, pp. 2050–2060, Nov. 1994. [26] T. Gonzalez, J. E. Velazquez, P. M. Gutierrez, and D. Pardo, “Analysis of the transient spectral density of velocity fluctuations in GaAs and InP,” J. Appl. Phys., vol. 72, no. 6, pp. 2322–2330, 1992. [27] P. Shiktorov, V. Gruzhinskis, E. Starikov, L. Reggiani, and L. Varani, “Transient-time effect on electronic noise in submicron n nn structures,” Appl. Phys. Lett., vol. 68, no. 11, pp. 1516–1518, 1996.
dspace.entity.typePublication
relation.isAuthorOfPublication328f9716-2012-44f9-aacc-ef8d48782a77
relation.isAuthorOfPublication53e43c76-7bce-46fd-9520-0edb4620c996
relation.isAuthorOfPublication.latestForDiscovery328f9716-2012-44f9-aacc-ef8d48782a77

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
MirandaJM112.pdf
Size:
74.09 KB
Format:
Adobe Portable Document Format

Collections