Projections of Grassmannians of lines and characterization of Veronese varieties
dc.contributor.author | Arrondo Esteban, Enrique | |
dc.date.accessioned | 2023-06-20T16:49:59Z | |
dc.date.available | 2023-06-20T16:49:59Z | |
dc.date.issued | 1999 | |
dc.description.abstract | We characterize the double Veronese embedding of P-n as the only variety that, under certain general conditions, can be isomorphically projected from the Grassmannian of lines in P2n+1 to the Grassmannian of lines in Pn+1. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/14842 | |
dc.identifier.issn | 1056-3911 | |
dc.identifier.officialurl | http://arxiv.org/pdf/alg-geom/9703032.pdf | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/57173 | |
dc.issue.number | 1 | |
dc.journal.title | Journal of algebraic geometry | |
dc.language.iso | eng | |
dc.page.final | 98 | |
dc.page.initial | 85 | |
dc.publisher | American Mathematical Society | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 512.7 | |
dc.subject.keyword | Superadditivity | |
dc.subject.ucm | Geometria algebraica | |
dc.subject.unesco | 1201.01 Geometría Algebraica | |
dc.title | Projections of Grassmannians of lines and characterization of Veronese varieties | |
dc.type | journal article | |
dc.volume.number | 8 | |
dcterms.references | [°Ad] °Adslandvik, B., Varieties with an extremal number of degenerate higher secant varieties, Journal reine angew. Math., 392 (1987), 213-222. [Ar] Arrondo, E., Subvarieties of Grassmannians, Lecture Notes Series Dipartimento di Matematica Univ. Trento, 10, 1996. [ABT] Arrondo, E. – Bertolini, M. – Turrini, C., Congruences of small degree in G(1, 4), Preprint 1996. [A-S] Arrondo, E. – Sols, I., On congruences of lines in the projective space, M´em. Soc. Math. France, 50, 1992. [F] Fantechi, B., On the superadditivity of secant defects, Bull. Soc. Math. France, 118 (1990), 85-100. [H-R] Holme, A. – Roberts, J., Zak’s theorem on superadditivity, Ark. Mat., 32 (1994), 99-120. [S] Severi, F., Intorno ai punti doppi impropri di una superficie generale dello spazio a quattro dimensioni, e a suoi punti tripli apparenti, Rend. Circ. Mat. Palermo, II, Ser. 15 (1901), 377-401. [Z1] Zak, F.L., Linear systems of hyperplane sections on varieties of low codimension, Functional Anal. Appl. 19 (1986), 165-173. [Z2] Zak, F.L., Tangents and Secants of Algebraic Varieties, Transl. Math. Monographs AMS 127, 1993. 14 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 5bd88a9c-e3d0-434a-a675-3221b2fde0e4 | |
relation.isAuthorOfPublication.latestForDiscovery | 5bd88a9c-e3d0-434a-a675-3221b2fde0e4 |
Download
Original bundle
1 - 1 of 1