Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Projections of Grassmannians of lines and characterization of Veronese varieties

dc.contributor.authorArrondo Esteban, Enrique
dc.date.accessioned2023-06-20T16:49:59Z
dc.date.available2023-06-20T16:49:59Z
dc.date.issued1999
dc.description.abstractWe characterize the double Veronese embedding of P-n as the only variety that, under certain general conditions, can be isomorphically projected from the Grassmannian of lines in P2n+1 to the Grassmannian of lines in Pn+1.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/14842
dc.identifier.issn1056-3911
dc.identifier.officialurlhttp://arxiv.org/pdf/alg-geom/9703032.pdf
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57173
dc.issue.number1
dc.journal.titleJournal of algebraic geometry
dc.language.isoeng
dc.page.final98
dc.page.initial85
dc.publisherAmerican Mathematical Society
dc.rights.accessRightsrestricted access
dc.subject.cdu512.7
dc.subject.keywordSuperadditivity
dc.subject.ucmGeometria algebraica
dc.subject.unesco1201.01 Geometría Algebraica
dc.titleProjections of Grassmannians of lines and characterization of Veronese varieties
dc.typejournal article
dc.volume.number8
dcterms.references[°Ad] °Adslandvik, B., Varieties with an extremal number of degenerate higher secant varieties, Journal reine angew. Math., 392 (1987), 213-222. [Ar] Arrondo, E., Subvarieties of Grassmannians, Lecture Notes Series Dipartimento di Matematica Univ. Trento, 10, 1996. [ABT] Arrondo, E. – Bertolini, M. – Turrini, C., Congruences of small degree in G(1, 4), Preprint 1996. [A-S] Arrondo, E. – Sols, I., On congruences of lines in the projective space, M´em. Soc. Math. France, 50, 1992. [F] Fantechi, B., On the superadditivity of secant defects, Bull. Soc. Math. France, 118 (1990), 85-100. [H-R] Holme, A. – Roberts, J., Zak’s theorem on superadditivity, Ark. Mat., 32 (1994), 99-120. [S] Severi, F., Intorno ai punti doppi impropri di una superficie generale dello spazio a quattro dimensioni, e a suoi punti tripli apparenti, Rend. Circ. Mat. Palermo, II, Ser. 15 (1901), 377-401. [Z1] Zak, F.L., Linear systems of hyperplane sections on varieties of low codimension, Functional Anal. Appl. 19 (1986), 165-173. [Z2] Zak, F.L., Tangents and Secants of Algebraic Varieties, Transl. Math. Monographs AMS 127, 1993. 14
dspace.entity.typePublication
relation.isAuthorOfPublication5bd88a9c-e3d0-434a-a675-3221b2fde0e4
relation.isAuthorOfPublication.latestForDiscovery5bd88a9c-e3d0-434a-a675-3221b2fde0e4

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
19.pdf
Size:
143.14 KB
Format:
Adobe Portable Document Format

Collections