Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

Electrical conductivity relaxation and nuclear magnetic resonance of Li conducting Li_(0.5)La_(0.5)TiO_(3)

dc.contributor.authorLeón Yebra, Carlos
dc.contributor.authorLucía Mulas, María Luisa
dc.contributor.authorSantamaría Sánchez-Barriga, Jacobo
dc.contributor.authorParís, M. A.
dc.contributor.authorSanz, J.
dc.contributor.authorVárez, A.
dc.date.accessioned2023-06-20T20:08:33Z
dc.date.available2023-06-20T20:08:33Z
dc.date.issued1996-07-01
dc.description© 1996 The American Physical Society.
dc.description.abstractLithium ionic conductivity of Li_(0.5)La_(0.5)TiO_(3) has been studied using nuclear magnetic resonance (NMR) and admittance spectroscopy (AS) techniques. Spin-lattice relaxation and electrical conductivity relaxation are well described in terms of stretched-exponential correlation functions in the time domain of the form φ(t) = exp(-(t/τ) (β), but showing different relaxation times scales (τ_(0) = 1.4 x 10^(-11) s from NMR and τ_(0) = 10^(-14) s from AS), and activation energies (0.15 and 0.4 eV, respectively). Different β exponents, 1 from spin lattice relaxation and 0.4 from electric-field relaxation have been also deduced. A microscopic activation energy for lithium motion of 0.15 eV is deduced from both techniques. Discrepancies between both techniques are analyzed and discussed in terms of frequency-dependent correlation effects.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/31276
dc.identifier.doi10.1103/PhysRevB.54.184
dc.identifier.issn1098-0121
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevB.54.184
dc.identifier.relatedurlhttp://journals.aps.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/59660
dc.issue.number1
dc.journal.titlePhysical review B
dc.language.isoeng
dc.page.final189
dc.page.initial184
dc.publisherAmerican Physical Society
dc.rights.accessRightsopen access
dc.subject.cdu537
dc.subject.keywordIonic-conductivity
dc.subject.keywordGlasses
dc.subject.keywordBehavior.
dc.subject.ucmElectricidad
dc.subject.ucmElectrónica (Física)
dc.subject.unesco2202.03 Electricidad
dc.titleElectrical conductivity relaxation and nuclear magnetic resonance of Li conducting Li_(0.5)La_(0.5)TiO_(3)
dc.typejournal article
dc.volume.number54
dcterms.references1) Y. Inaguma, L. Chen, M. Itoh, T. Nakamura, T. Uchida, M. Ikuta, M. Wakihara, Solid State Commun., 86, 689 (1993). 2) Y. Inaguma, L. Chen, M. Itoh, T. Nakamura, Solid State Ionics, 70/71, 196 (1994). 3) M. Itoh, Y. Inaguma, W. Jung, L. Chen, T. Nakamura, Solid State Ionics, 70/71, 203 (1994). 4) K. L. Ngai, Phys. Rev. B, 48, 13, 481 (1993) (and references therein). 5) E. Fukushima, S. B. W. Roeder, Experimental Pulse NMR (a Nuts and Bolts Approach) (Addison-Wesley, Reading, MA, 1981). 6) C. P. Slichter, in Principles of Magnetic Resonance, 3rd ed., edited by P. Fulde (Springer-Verlag, Berlin, 1991). 7) A. Abragam, in The Principles of Nuclear Magnetism, edited by W. C. Marshall and D. H. Wilkinson (Oxford University Press, Oxford, 1961). 8) N. Bloembergen, E. M. Purcell, R. V. Pound, Phys. Rev., 73, 679 (1948). 9) S. M. Day, G. B. Grimes, Jr., W. Weatherford, Phys. Rev., 139, 515 (1965). 10) A. K. Jonscher, in Dielectric Relaxation in Solids (Chelsea Dielectric, London, 1983). 11) R. Kohlrausch, Ann. Phys. (Leipzig), 72, 393 (1847). 12) P. B. Macedo, C. T. Moynihan, R. Bosé, Phys. Chem. Glasses, 13, 171 (1972). 13) K. L. Ngai, R. W. Rendell, H. Jain, Phys. Rev. B, 30, 2133 (1984). 14) W. K. Lee, J. F. Liu, A. S. Nowick, Phys. Rev. Lett., 67, 1559 (1991). 15) M. Tatsumisago, C. A. Angell, S. W. Martin, J. Chem. Phys., 97, 6968 (1992). 16) M. Meyer, P. Maass, A. Bunde, Phys. Rev. Lett., 71, 573 (1993). 17) K. L. Ngai, Comments Solid State Phys., 9, 127 (1979) --- ibid., 9, 141 (1980). 18) K. Funke, in Superionic Solids and Solid Electrolytes: Recent Trends, edited by A. L. Laskar and S. Chandra (Academic, New York, 1989) --- Prog. Solid State Chem., 22, 111 (1993).
dspace.entity.typePublication
relation.isAuthorOfPublication213f0e33-39f1-4f27-a134-440d5d16a07c
relation.isAuthorOfPublication83f99fc6-abdc-4870-9040-a54cfb6fd5bf
relation.isAuthorOfPublication75fafcfc-6c46-44ea-b87a-52152436d1f7
relation.isAuthorOfPublication.latestForDiscovery213f0e33-39f1-4f27-a134-440d5d16a07c

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
LeonC128libre.pdf
Size:
142.77 KB
Format:
Adobe Portable Document Format

Collections