Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Machine Learning Prediction of University Student Dropout: Does Preference Play a Key Role?

dc.contributor.authorSegura Maroto, Marina
dc.contributor.authorMello, Jorge
dc.contributor.authorHernández, Adolfo
dc.date.accessioned2023-06-22T12:46:29Z
dc.date.available2023-06-22T12:46:29Z
dc.date.issued2022
dc.description.abstractUniversity dropout rates are a problem that presents many negative consequences. It is an academic issue and carries an unfavorable economic impact. In recent years, significant efforts have been devoted to the early detection of students likely to drop out. This paper uses data corresponding to dropout candidates after their first year in the third largest face-to-face university in Europe, with the goal of predicting likely dropout either at the beginning of the course of study or at the end of the first semester. In this prediction, we considered the five major program areas. Different techniques have been used: first, a Feature Selection Process in order to identify the variables more correlated with dropout; then, some Machine Learning Models (Support Vector Machines, Decision Trees and Artificial Neural Networks) as well as a Logistic Regression. The results show that dropout detection does not work only with enrollment variables, but it improves after the first semester results. Academic performance is always a relevant variable, but there are others, such as the level of preference that the student had over the course that he or she was finally able to study. The success of the techniques depends on the program areas. Machine Learning obtains the best results, but a simple Logistic Regression model can be used as a reasonable baseline.
dc.description.departmentDepto. de Economía Financiera y Actuarial y Estadística
dc.description.facultyFac. de Ciencias Económicas y Empresariales
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/77291
dc.identifier.doi10.3390/math10183359
dc.identifier.issn2227-7390
dc.identifier.officialurlhttps://doi.org/10.3390/math10183359
dc.identifier.urihttps://hdl.handle.net/20.500.14352/73163
dc.issue.number18
dc.journal.titleMathematics
dc.language.isoeng
dc.page.initial3359
dc.publisherMDPI
dc.rights.accessRightsopen access
dc.subject.keywordStudent dropout
dc.subject.keywordMachine learning
dc.subject.keywordFeature Selection
dc.subject.keywordArtificial Neural Networks
dc.subject.keywordSupport Vector Machines
dc.subject.keywordDecision trees
dc.subject.keywordLogistic regression.
dc.subject.ucmEstadística aplicada
dc.subject.ucmAprendizaje
dc.subject.ucmEnseñanza universitaria
dc.subject.unesco6104.03 Leyes del Aprendizaje
dc.subject.unesco5801.08 Enseñanza Programada
dc.titleMachine Learning Prediction of University Student Dropout: Does Preference Play a Key Role?
dc.typejournal article
dc.volume.number10
dspace.entity.typePublication
relation.isAuthorOfPublication447cb780-3038-40b7-97a3-06c0fd5f36d7
relation.isAuthorOfPublication.latestForDiscovery447cb780-3038-40b7-97a3-06c0fd5f36d7

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
mathematics-10-03359-v2.pdf
Size:
5.87 MB
Format:
Adobe Portable Document Format

Collections