Un lenguaje de modelado específico para Autómatas Fuzzy
Loading...
Official URL
Full text at PDC
Publication date
2019
Authors
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Citation
Abstract
En la actualidad los avances médicos están ligados a los tecnológicos, pero no por ello los especialistas tienen los conocimientos necesarios para poder explotar las nuevas tecnologías. Uno de los campos en los que es necesario el uso de sistemas que traten y estudien los datos clínicos de manera precisa es la prevención de enfermedades. Los métodos formales ofrecen el rigor y la precisión necesarios para el modelado del proceso de análisis de dichos datos. En particular, los autómatas fuzzy son muy apropiados en este caso, ya que permiten representar la incertidumbre e imprecisión que se han de tener en cuenta en este tipo de análisis. En este trabajo se propone crear una herramienta gráfica que permita a los especialistas médicos, que son los que tienen el conocimiento clínico, el diseño de estos modelos de análisis de una manera sencilla e intuitiva. El objetivo principal de este trabajo es crear un entorno de diseño de modelos basados en autómatas fuzzy a través de un lenguaje de dominio específico y un editor gráfico para facilitar el diagnóstico precoz de enfermedades.
El código del proyecto puede ser descargado en https://github.com/mariacaslop/ Environment-of-model-design-based-on-fuzzy-automaton
Currently, it is undeniable that medical advances are linked to technological ones, but that this does not mean that specialists have the necessary knowledge to be able to exploit the new technologies. One of the fields in which it is necessary to use systems that process and study clinical data in a precise way is disease prevention. Formal methods can offer the rigor and precision necessary for the modeling of the process of analysis of said data. In particular, the fuzzy automatons are very suitable in this case, since they allow to represent the uncertainty and inaccuracy which must be taken into account in this type of analysis. In this paper is proposed to create a graphic tool which allows medical specialists with clinical knowledge, the design of these analysis models in a simple and intuitive way. In relation to the main purpose of this paper, it could be stated that it is to create an environment of model design based on fuzzy automaton through a specific domain language and a graphic editor to facilitate the early diagnosis of diseases. The code of this proyect can be downloaded from https://github.com/mariacaslop/ Environment-of-model-design-based-on-fuzzy-automaton
Currently, it is undeniable that medical advances are linked to technological ones, but that this does not mean that specialists have the necessary knowledge to be able to exploit the new technologies. One of the fields in which it is necessary to use systems that process and study clinical data in a precise way is disease prevention. Formal methods can offer the rigor and precision necessary for the modeling of the process of analysis of said data. In particular, the fuzzy automatons are very suitable in this case, since they allow to represent the uncertainty and inaccuracy which must be taken into account in this type of analysis. In this paper is proposed to create a graphic tool which allows medical specialists with clinical knowledge, the design of these analysis models in a simple and intuitive way. In relation to the main purpose of this paper, it could be stated that it is to create an environment of model design based on fuzzy automaton through a specific domain language and a graphic editor to facilitate the early diagnosis of diseases. The code of this proyect can be downloaded from https://github.com/mariacaslop/ Environment-of-model-design-based-on-fuzzy-automaton
Description
El código del proyecto puede ser descargado en https://github.com/mariacaslop/
Environment-of-model-design-based-on-fuzzy-automaton
Trabajo de Fin de Máster, Universidad Complutense, Facultad de Informática, Departamento de Sistemas Informáticos y Computación, Curso 2018/2019