Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Zernike power spectra of clear and cloudy light-polluted urban night skies

dc.contributor.authorBará, Salvador
dc.contributor.authorTilve, Victor
dc.contributor.authorNievas Rosillo, Mireia
dc.contributor.authorSánchez De Miguel, Alejandro
dc.contributor.authorZamorano Calvo, Jaime
dc.date.accessioned2023-06-18T06:46:07Z
dc.date.available2023-06-18T06:46:07Z
dc.date.issued2015-05-01
dc.description© 2015 Optical Society of America. This work was partially funded by the Xunta de Galicia, Programa de Consolidación e Estruturación de Unidades de Investigación Competitivas, grant CN 2012/156, the Spanish Ministry of Science and Innovation MICINN (AYA2012-30717, AYA2012-31277, AYA2013-46724-P, and FPA2010-22056-C06- 06), the Spanish program of International Campus of Excellence Moncloa (CEI) and the Madrid Regional Government through the SpaceTec Project (S2013/ICE-2822). A. Sánchez de Miguel was supported by an FPU grant from MICINN. This work was developed within the framework of the Spanish Network for Light Pollution Studies (Ministerio de Economía y Competitividad, Acción Complementaria AYA2011-15808-E). Useful comments from two anonymous reviewers are also acknowledged.
dc.description.abstractThe Zernike power spectra of the all-sky night brightness distributions of clear and cloudy nights are computed using a modal projection approach. The results obtained in the B, V, and R Johnson-Cousins' photometric bands during a one-year campaign of observations at a light-polluted urban site show that these spectra can be described by simple power laws with exponents close to -3 for clear nights and -2 for cloudy ones. The second-moment matrices of the Zernike coefficients show relevant correlations between modes. The multiplicative role of the cloud cover, that contributes to a significant increase of the brightness of the urban night sky in comparison with the values obtained on clear nights, is described in the Zernike space.
dc.description.departmentDepto. de Física de la Tierra y Astrofísica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipXunta de Galicia
dc.description.sponsorshipMinisterio de Ciencia e Innovacion (MICINN), España
dc.description.sponsorshipCampus de Excelencia Internacional (CEI) Moncloa, España
dc.description.sponsorshipComunidad de Madrid
dc.description.sponsorshipMinisterio de Ciencia e Innovacion (MICINN), España
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/32570
dc.identifier.doi10.1364/AO.54.004120
dc.identifier.issn1559-128X
dc.identifier.officialurlhttp://dx.doi.org/10.1364/AO.54.004120
dc.identifier.relatedurlhttps://www.osapublishing.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/24105
dc.issue.number13
dc.journal.titleApplied optics
dc.language.isoeng
dc.page.final4129
dc.page.initial4120
dc.publisherOptical Society Of America
dc.relation.projectIDCN 2012/156
dc.relation.projectIDAYA2012-30717
dc.relation.projectIDAYA2012-31277
dc.relation.projectIDAYA2013-46724-P
dc.relation.projectIDFPA2010-22056-C06- 06
dc.relation.projectIDSpaceTec (S2013/ICE-2822)
dc.rights.accessRightsopen access
dc.subject.cdu52
dc.subject.keywordEye aberration coefficients
dc.subject.keywordSky brightness
dc.subject.keywordExpansion coefficients
dc.subject.keywordPupil sizes
dc.subject.keywordCCD camera
dc.subject.keywordTransformation
dc.subject.keywordAperture
dc.subject.keywordSkyglow
dc.subject.keywordSystem
dc.subject.keywordModel
dc.subject.ucmAstrofísica
dc.subject.ucmAstronomía (Física)
dc.titleZernike power spectra of clear and cloudy light-polluted urban night skies
dc.typejournal article
dc.volume.number54
dcterms.references1. R. H. Garstang, “Model for artificial night-sky illumination,” Publ. Astron. Soc. Pac. 98, 364–375 (1986). 2. M. Kocifaj, “Light-pollution model for cloudy and cloudless night skies with ground-based light sources,” Appl. Opt. 46, 3013-3022 (2007). 3. M. Kocifaj, “Light pollution simulations for planar groundbased light sources,” Appl. Opt. 47, 792-798 (2008). 4. M. Kocifaj, “A numerical experiment on light pollution from distant sources” Mon. Not. R. Astron. Soc. 415, 3609–3615 (2011). 5. P. Cinzano and F. Falchi, “The propagation of light pollution in the atmosphere,” Mon. Not. R. Astron. Soc. 427, 3337–3357 (2012). 6. M. Aubé and M. Kocifaj, “Using two light-pollution models to investigate artificial sky radiances at Canary Islands observatories,” Mon. Not. R. Astron. Soc. 422, 819–830 (2012). 7. M. F. Walker, “The California Site Survey,” Publ. Astron. Soc. Pac. 82, 672-698 (1970). 8. P. Cinzano, F. Falchi and C. Elvidge, “The first world atlas of the artificial night sky brightness,” Mon. Not. R. Astron. Soc. 328, 689–707 (2001). 9. K. Thapan, J. Arendt, and D.J. Skene, “An action spectrum for melatonin suppression: evidence for a novel non-rod, non-cone photoreceptor system in humans,” J. Physiol. 535, 261–267 (2001). 10. D. M. Berson, F. A. Dunn and M. Takao, “Phototransduction by Retinal Ganglion Cells That Set the Circadian Clock,” Science 295, 1070-1073 (2002). 11. F. Hölker, C. Wolter, E. K. Perkin, and K. Tockner, “Light pollution as a biodiversity threat,” Trends Ecol. Evol. 25, 681-682 (2010). 12. C. S. J. Pun and C. W. So, "Night-sky brightness monitoring in Hong Kong. A city-wide light pollution assessment," Environ. Monit. Assess. 184, 2537–2557 (2012). 13. K. J. Gaston, J. Bennie, T. W. Davies, and J. Hopkins, "The ecological impacts of nighttime light pollution: a mechanistic appraisal," Biological Reviews 88, 912–927 (2013). 14. K. J. Gaston, J. P. Duffy, S. Gaston, J. Bennie, and T. W. Davies, "Human alteration of natural light cycles: causes and ecological consequences," Oecologia 176, 917–931 (2014). 15. C. Marín and J. Jafari (Eds.), Starlight, A Common Heritage, Starlight Initiative-Instituto de Astrofísica de Canarias (IAC, 2007). 16. C. C. M. Kyba, A. Hänel, and F. Hölker, "Redefining efficiency for outdoor lighting," Energy Environ. Sci. 7, 1806-1809 (2014). 17. C. C. M. Kyba, T. Ruhtz, J. Fischer, F. Hölker, "Cloud Coverage Acts as an Amplifier for Ecological Light Pollution in Urban Ecosystems," PLoS ONE 6(3):e17307 (2011) . 18. C. C. M. Kyba, T. Ruhtz, J. Fischer, and F. Hölker, "Red is the new black: how the colour of urban skyglow varies with cloud cover," Mon. Not. R. Astron. Soc. 425, 701–708 (2012). 19. C. C. M. Kyba, K. Pong Tong, et al., "Worldwide variations in artificial skyglow," Scientific Reports 5, 8409 (2015) doi:10.1038/srep08409 20. K. Tohsing, M. Schrempf, S. Riechelmann, H. Schilke, and G. Seckmeyer, “Measuring high-resolution sky luminance distributions with a CCD camera,” Appl. Opt. 52, 1564-1573 (2013). 21. D.M. Duriscoe, C.B. Luginbuhl, and C.A. Moore, “Measuring Night-Sky Brightness with a Wide-Field CCD Camera,” Publ. Astron. Soc. Pac. 119, 192–213 (2007). 22. O. Rabaza, D. Galadí Enríquez, A. Espín Estrella, and F. Aznar Dols, “All-Sky brightness monitoring of light pollution with astronomical methods,” J. Environ. Manage. 91, 1278-1287 (2010). 23. J. Aceituno, S.F. Sánchez, F.J. Aceituno, D. Galadí Enríquez, J.J. Negro, R.C. Soriguer, and G. Sánchez Gómez, “An All-Sky Transmission Monitor: ASTMON,” Publ. Astron. Soc. Pac. 123, 1076–1086 (2011). 24. M. S. Bessell, "UBVRI photometry II: The Cousins VRI system, its temperature and absolute flux calibration, and relevance for two-dimensional photometry," Publ. Astron. Soc. Pac. 91, 589–607 (1979). 25. S. Bará, M. Nievas, A. Sánchez de Miguel, and J. Zamorano, "Zernike analysis of all-sky night brightness maps," Appl. Opt. 53, 2677-2686 (2014). 26. F. Zernike, "Beugungstheorie des Schneidenverfahrens und seiner verbesserten Form, der Phasenkontrastmethode," Physica 1, 689-704 (1934). 27. M. Born and E. Wolf, Principles of Optics (Cambridge University Press, 1998), pp. 464-466, 767-772. 28. P. B. Liebelt, An Introduction to Optimal Estimation (Addison-Wesley, Reading, MA, 1967). 29. J. Herrmann, “Least-squares wave front errors of minimum norm,” J. Opt. Soc. Am. 70, 28-35 (1980). 30. M. R. Calabretta and E. W. Greisen, "Representation of celestial coordinates in FITS," Astronomy and Astrophysics 395, 1077-1122 (2002). 31. S. Bará, E. Pailos and J. Arines, Signal-to-noise ratio and aberration statistics in ocular aberrometry, Optics Lett. 37, 2427-2429 (2012). 32. S. Bará, E. Pailos, J. Arines, N. López Gil, and L. Thibos, Estimating the eye aberration coefficients in resized pupils: Is it better to refit or to rescale?, J. Opt. Soc. Am. A 31, 114-123 (2014). 33. J. Schwiegerling, "Scaling Zernike expansion coefficients to different pupil sizes," J. Opt. Soc. Am. A 19, 1937-1945. (2002). 34. C.E. Campbell, "Matrix method to find a new set of Zernike coefficients from an original set when the aperture radius is changed," J. Opt. Soc. Am. A 20, 209-217 (2003). 35. G.M. Dai, "Scaling Zernike expansion coefficients to smaller pupil sizes: a simpler formula," J. Opt. Soc. Am. A 23, 539-543 (2006). 36. H. Shu, L. Luo, G. Han, and J.L. Coatrieux, "General method to derive the relationship between two sets of Zernike coefficients corresponding to different aperture sizes," J. Opt. Soc. Am. A 23, 1960-1968 (2006). 37. S. Bará, J. Arines, J. Ares, and P. Prado, "Direct transformation of Zernike eye aberration coefficients between scaled, rotated and/or displaced pupils," J. Opt. Soc. Am. A 23, 2061-2066 (2006). 38. A.J. Janssen and P Dirksen, "Concise formula for the Zernike coefficients of scaled pupils," Journal of Microlithography, Microfabrication, and Microsystem. 5, 030501-1–030501-3 (2006). 39. L. Lundström and P. Unsbo, "Transformation of Zernike coefficients: scaled, translated, and rotated wavefronts with circular and elliptical pupils," J. Opt. Soc. Am. A 24, 569-577 (2007). 40. A.J. Janssen, S. van Haver, P. Dirksen and J.J. Braat, "Zernike representation and Strehl ratio of optical systems with variable numerical aperture," J. Mod. Opt. 55, 1127-1157 (2008). 41. J.A. Díaz, J. Fernández Dorado, C. Pizarro and J. Arasa, "Zernike coefficients for concentric, circular scaled pupils: an equivalent expansion," J. Mod. Opt. 56, 149-155 (2009). 42. K. Dillon, "Bilinear wavefront transformation," J. Opt. Soc. Am. A 26, 1839-1846 (2009). 43. V.N. Mahajan, "Zernike coefficients of a scaled pupil," Appl. Opt. 49, 5374-5377 (2010). 44. E. Tatulli, "Transformation of Zernike coefficients: a Fourier-based method for scaled, translated, and rotated wavefront apertures," J. Opt. Soc. Am. A 30, 726-732 (2013).
dspace.entity.typePublication
relation.isAuthorOfPublication355179c2-4111-4313-8c52-8bfc0775c2b3
relation.isAuthorOfPublication9938be75-8360-4566-8763-c7afe78f3614
relation.isAuthorOfPublication949589a4-3398-4ac6-805c-5dcf70d066f2
relation.isAuthorOfPublication.latestForDiscovery355179c2-4111-4313-8c52-8bfc0775c2b3

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
zamorano134postprint.pdf
Size:
3.92 MB
Format:
Adobe Portable Document Format

Collections