Global multiplicity results in a Moore–Nehari type problem with a spectral parameter
| dc.contributor.author | López Gómez, Julián | |
| dc.contributor.author | Muñoz Hernández, Eduardo | |
| dc.contributor.author | Zanolin, Fabio | |
| dc.date.accessioned | 2025-08-25T09:29:07Z | |
| dc.date.available | 2025-08-25T09:29:07Z | |
| dc.date.issued | 2025-07-09 | |
| dc.description.abstract | This paper analyzes the structure of the set of positive solutions of \eqref{1.1}, where $a\equiv a_h$ is the piece-wise constant function defined in \eqref{1.3} for some $h\in (0,1)$. In our analysis, $\l$ is regarded as a bifurcation parameter, whereas $h$ is viewed as a deformation parameter between the autonomous case when $a=1$ and the linear case when $a=0$. In this paper, besides establishing some of the multiplicity results suggested by the numerical experiments of \cite{CLGT-2024}, we have analyzed the asymptotic behavior of the positive solutions of \eqref{1.1} as $h\uparrow 1$, when the shadow system of \eqref{1.1} is the linear equation $-u''=\pi^2 u$. This is the first paper where such a problem has been addressed. Numerics is of no help in analyzing this singular perturbation problem because the positive solutions blow-up point-wise in $(0,1)$ as $h\uparrow 1$ if $\l<\pi^2$. | |
| dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
| dc.description.faculty | Fac. de Ciencias Químicas | |
| dc.description.faculty | Instituto de Matemática Interdisciplinar (IMI) | |
| dc.description.refereed | TRUE | |
| dc.description.sponsorship | Universidad Complutense de Madrid | |
| dc.description.status | pub | |
| dc.identifier.citation | López-Gómez J, Muñoz-Hernández E, Zanolin F. Global multiplicity results in a Moore–Nehari type problem with a spectral parameter. J Diff Eqs. 2025 Dec 447; 5 December 2025, 113628 | |
| dc.identifier.doi | 10.1016/j.jde.2025.113628 | |
| dc.identifier.officialurl | https://doi.org/10.1016/j.jde.2025.113628 | |
| dc.identifier.relatedurl | https://www.sciencedirect.com/journal/journal-of-differential-equations/vol/447/suppl/C | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14352/123341 | |
| dc.issue.number | 5 December 2025, 113628 | |
| dc.journal.title | Journal of Differential Equations | |
| dc.language.iso | eng | |
| dc.page.final | 41 | |
| dc.page.initial | 1 | |
| dc.publisher | Elsevier | |
| dc.relation.projectID | Proyecto PID2024-155890NB-I00: Ecuaciones Diferenciales Heterogéneas. Ministerio de Ciencias, Innovación y Universidades, Gobierno de España. IP: Julián López-Gómez | |
| dc.rights | Attribution-NoDerivatives 4.0 International | en |
| dc.rights.accessRights | open access | |
| dc.rights.uri | http://creativecommons.org/licenses/by-nd/4.0/ | |
| dc.subject.cdu | 517.9 | |
| dc.subject.keyword | Moore-Nehari equation | |
| dc.subject.keyword | Multiplicity of positive solutions | |
| dc.subject.keyword | Point-wise blow-up to a metasolution | |
| dc.subject.keyword | Spectral parameter | |
| dc.subject.ucm | Ecuaciones diferenciales | |
| dc.subject.unesco | 1202.19 Ecuaciones Diferenciales Ordinarias | |
| dc.title | Global multiplicity results in a Moore–Nehari type problem with a spectral parameter | |
| dc.type | journal article | |
| dc.volume.number | 447 | |
| dspace.entity.type | Publication | |
| relation.isAuthorOfPublication | 27effbc8-f76e-4c18-8514-82cf8fe8ccbf | |
| relation.isAuthorOfPublication | 6257d3ed-79fd-46b2-a66b-f0c8b166abc7 | |
| relation.isAuthorOfPublication.latestForDiscovery | 27effbc8-f76e-4c18-8514-82cf8fe8ccbf |
Download
Original bundle
1 - 1 of 1


