Global multiplicity results in a Moore–Nehari type problem with a spectral parameter

dc.contributor.authorLópez Gómez, Julián
dc.contributor.authorMuñoz Hernández, Eduardo
dc.contributor.authorZanolin, Fabio
dc.date.accessioned2025-08-25T09:29:07Z
dc.date.available2025-08-25T09:29:07Z
dc.date.issued2025-07-09
dc.description.abstractThis paper analyzes the structure of the set of positive solutions of \eqref{1.1}, where $a\equiv a_h$ is the piece-wise constant function defined in \eqref{1.3} for some $h\in (0,1)$. In our analysis, $\l$ is regarded as a bifurcation parameter, whereas $h$ is viewed as a deformation parameter between the autonomous case when $a=1$ and the linear case when $a=0$. In this paper, besides establishing some of the multiplicity results suggested by the numerical experiments of \cite{CLGT-2024}, we have analyzed the asymptotic behavior of the positive solutions of \eqref{1.1} as $h\uparrow 1$, when the shadow system of \eqref{1.1} is the linear equation $-u''=\pi^2 u$. This is the first paper where such a problem has been addressed. Numerics is of no help in analyzing this singular perturbation problem because the positive solutions blow-up point-wise in $(0,1)$ as $h\uparrow 1$ if $\l<\pi^2$.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Químicas
dc.description.facultyInstituto de Matemática Interdisciplinar (IMI)
dc.description.refereedTRUE
dc.description.sponsorshipUniversidad Complutense de Madrid
dc.description.statuspub
dc.identifier.citationLópez-Gómez J, Muñoz-Hernández E, Zanolin F. Global multiplicity results in a Moore–Nehari type problem with a spectral parameter. J Diff Eqs. 2025 Dec 447; 5 December 2025, 113628
dc.identifier.doi10.1016/j.jde.2025.113628
dc.identifier.officialurlhttps://doi.org/10.1016/j.jde.2025.113628
dc.identifier.relatedurlhttps://www.sciencedirect.com/journal/journal-of-differential-equations/vol/447/suppl/C
dc.identifier.urihttps://hdl.handle.net/20.500.14352/123341
dc.issue.number5 December 2025, 113628
dc.journal.titleJournal of Differential Equations
dc.language.isoeng
dc.page.final41
dc.page.initial1
dc.publisherElsevier
dc.relation.projectIDProyecto PID2024-155890NB-I00: Ecuaciones Diferenciales Heterogéneas. Ministerio de Ciencias, Innovación y Universidades, Gobierno de España. IP: Julián López-Gómez
dc.rightsAttribution-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/
dc.subject.cdu517.9
dc.subject.keywordMoore-Nehari equation
dc.subject.keywordMultiplicity of positive solutions
dc.subject.keywordPoint-wise blow-up to a metasolution
dc.subject.keywordSpectral parameter
dc.subject.ucmEcuaciones diferenciales
dc.subject.unesco1202.19 Ecuaciones Diferenciales Ordinarias
dc.titleGlobal multiplicity results in a Moore–Nehari type problem with a spectral parameter
dc.typejournal article
dc.volume.number447
dspace.entity.typePublication
relation.isAuthorOfPublication27effbc8-f76e-4c18-8514-82cf8fe8ccbf
relation.isAuthorOfPublication6257d3ed-79fd-46b2-a66b-f0c8b166abc7
relation.isAuthorOfPublication.latestForDiscovery27effbc8-f76e-4c18-8514-82cf8fe8ccbf

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
25 LG-MH-Z JDE.pdf
Size:
1.4 MB
Format:
Adobe Portable Document Format

Collections